Suppr超能文献

深度学习在心肌灌注成像中的应用:一项系统评价与荟萃分析

Deep learning applications in myocardial perfusion imaging, a systematic review and meta-analysis.

作者信息

Alskaf Ebraham, Dutta Utkarsh, Scannell Cian M, Chiribiri Amedeo

机构信息

School of Biomedical Engineering & Imaging Sciences, King's College London, United Kingdom.

GKT, School of Medicine, King's College London, United Kingdom.

出版信息

Inform Med Unlocked. 2022;32:101055. doi: 10.1016/j.imu.2022.101055.

Abstract

BACKGROUND

Coronary artery disease (CAD) is a leading cause of death worldwide, and the diagnostic process comprises of invasive testing with coronary angiography and non-invasive imaging, in addition to history, clinical examination, and electrocardiography (ECG). A highly accurate assessment of CAD lies in perfusion imaging which is performed by myocardial perfusion scintigraphy (MPS) and magnetic resonance imaging (stress CMR). Recently deep learning has been increasingly applied on perfusion imaging for better understanding of the diagnosis, safety, and outcome of CAD.The aim of this review is to summarise the evidence behind deep learning applications in myocardial perfusion imaging.

METHODS

A systematic search was performed on MEDLINE and EMBASE databases, from database inception until September 29, 2020. This included all clinical studies focusing on deep learning applications and myocardial perfusion imaging, and excluded competition conference papers, simulation and animal studies, and studies which used perfusion imaging as a variable with different focus. This was followed by review of abstracts and full texts. A meta-analysis was performed on a subgroup of studies which looked at perfusion images classification. A summary receiver-operating curve (SROC) was used to compare the performance of different models, and area under the curve (AUC) was reported. Effect size, risk of bias and heterogeneity were tested.

RESULTS

46 studies in total were identified, the majority were MPS studies (76%). The most common neural network was convolutional neural network (CNN) (41%). 13 studies (28%) looked at perfusion imaging classification using MPS, the pooled diagnostic accuracy showed AUC = 0.859. The summary receiver operating curve (SROC) comparison showed superior performance of CNN (AUC = 0.894) compared to MLP (AUC = 0.848). The funnel plot was asymmetrical, and the effect size was significantly different with p value < 0.001, indicating small studies effect and possible publication bias. There was no significant heterogeneity amongst studies according to Q test (p = 0.2184).

CONCLUSION

Deep learning has shown promise to improve myocardial perfusion imaging diagnostic accuracy, prediction of patients' events and safety. More research is required in clinical applications, to achieve better care for patients with known or suspected CAD.

摘要

背景

冠状动脉疾病(CAD)是全球主要的死亡原因之一,其诊断过程包括冠状动脉造影的侵入性检查、非侵入性成像,以及病史、临床检查和心电图(ECG)。对CAD的高度准确评估在于灌注成像,其通过心肌灌注闪烁显像(MPS)和磁共振成像(负荷心脏磁共振成像)来进行。最近,深度学习越来越多地应用于灌注成像,以更好地理解CAD的诊断、安全性和预后。本综述的目的是总结深度学习在心肌灌注成像中应用的相关证据。

方法

对MEDLINE和EMBASE数据库进行了系统检索,检索时间从数据库建立至2020年9月29日。这包括所有关注深度学习应用和心肌灌注成像的临床研究,排除竞赛会议论文、模拟和动物研究,以及将灌注成像用作具有不同重点的变量的研究。随后对摘要和全文进行了审查。对一组关注灌注图像分类的研究进行了荟萃分析。使用汇总的受试者工作特征曲线(SROC)来比较不同模型的性能,并报告曲线下面积(AUC)。对效应大小、偏倚风险和异质性进行了检验。

结果

总共确定了46项研究,其中大多数是MPS研究(76%)。最常见的神经网络是卷积神经网络(CNN)(41%)。13项研究(28%)使用MPS进行灌注成像分类,汇总诊断准确性显示AUC = 0.859。汇总受试者工作特征曲线(SROC)比较显示,与多层感知器(MLP)(AUC = 0.848)相比,CNN的性能更优(AUC = 0.894)。漏斗图不对称,效应大小差异显著,p值<0.001,表明存在小研究效应和可能的发表偏倚。根据Q检验,各研究之间无显著异质性(p = 0.2184)。

结论

深度学习已显示出有望提高心肌灌注成像的诊断准确性、对患者事件的预测能力和安全性。在临床应用方面还需要更多研究,以便为已知或疑似CAD患者提供更好的治疗。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5f4f/9514037/ccea76b183f3/gr1.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验