Zhao Jiaqi, Chen Xiang, Zhang Xu, Chen Xun
Dept Elect Sci & Technol, University of Science and Technology of China, Hefei, 230027, Anhui, China.
Med Biol Eng Comput. 2022 Dec;60(12):3419-3433. doi: 10.1007/s11517-022-02678-x. Epub 2022 Oct 3.
In order to realize high-accuracy heart rate (HR) estimation based on photoplethysmography (PPG) under the scenes of low signal-to-noise ratio (SNR) and co-frequency caused by motion artifacts (MAs), this paper presents a novel framework integrating two-stage variational mode decomposition (VMD) denoising method, noise compensation technology, and hidden Markov model (HMM)-based tracking algorithm. The two-stage VMD denoising method is designed to separate the HR signal from MA under low SNR scene. The noise compensation technology is applied to solve the problem of co-frequency. HMM-based HR tracking method is adopted to obtain the global optimization performance of HR estimation. The effectiveness and superiority of the proposed framework in solving problems of low SNR and co-frequency associated with motion artifacts have been verified by the HR estimation experiments carried out on three public high-SNR PPG databases (ISPC, BAMI I, BAMI II) and a self-built low-SNR database (WeData). Compared with the two classical frameworks namely joint sparse spectrum reconstruction (JOSS) and convolutional neural network-long short-term memory network (CNN-LSTM), the proposed framework obtains the lowest HR estimation errors (0.94 beats per minute (BPM) and 1.81 BPM respectively) on both BAMI 2 with the highest SNR (0.40 dB) and WeData with the lowest SNR (- 9.07 dB). For the low-SNR database Wedata, the average absolute error (AAE) decreases by more than 21 BPM. The research result of this study provides a solution for the realization of high-accuracy PPG-based HR estimation in exercise scenarios.
为了在低信噪比(SNR)以及由运动伪影(MA)导致的同频场景下,基于光电容积脉搏波描记法(PPG)实现高精度心率(HR)估计,本文提出了一种新颖的框架,该框架集成了两阶段变分模态分解(VMD)去噪方法、噪声补偿技术以及基于隐马尔可夫模型(HMM)的跟踪算法。两阶段VMD去噪方法旨在在低SNR场景下将HR信号与MA分离。噪声补偿技术用于解决同频问题。采用基于HMM的HR跟踪方法来获得HR估计的全局优化性能。通过在三个公共高SNR PPG数据库(ISPC、BAMI I、BAMI II)和一个自建低SNR数据库(WeData)上进行的HR估计实验,验证了所提框架在解决与运动伪影相关的低SNR和同频问题方面的有效性和优越性。与联合稀疏频谱重建(JOSS)和卷积神经网络 - 长短期记忆网络(CNN - LSTM)这两种经典框架相比,所提框架在SNR最高(0.40 dB)的BAMI 2和SNR最低(-9.07 dB)的WeData上分别获得了最低的HR估计误差(分别为0.94次/分钟(BPM)和1.81 BPM)。对于低SNR数据库Wedata,平均绝对误差(AAE)降低了超过21 BPM。本研究的结果为在运动场景中实现基于PPG的高精度HR估计提供了一种解决方案。