Cardenas Jorge A, Bullivant John P, Kolesnichenko Igor V, Roach Devin J, Gallegos Michael A, Coker Eric N, Lambert Timothy N, Allcorn Eric, Talin A Alec, Cook Adam W, Harrison Katharine L
Sandia National Laboratories, Albuquerque, New Mexico 87123, United States.
Sandia National Laboratories, Livermore, California 94550, United States.
ACS Appl Mater Interfaces. 2022 Oct 12;14(40):45342-45351. doi: 10.1021/acsami.2c11954. Epub 2022 Oct 3.
Additive manufacturing can enable the fabrication of batteries in nonconventional form factors, enabling higher practical energy density due to improved material packing efficiency of power sources in devices. Furthermore, energy density can be improved by transitioning from conventional Li-ion battery materials to lithium metal anodes and conversion cathodes. Iron disulfide (FeS) is a prominent conversion cathode of commercial interest; however, the direct-ink-write (DIW) printing of FeS inks for custom-form battery applications has yet to be demonstrated or optimized. In this work, DIW printing of FeS inks is used to systematically investigate the impact of ink solid concentration on rheology, film shape retention on arbitrary surfaces, cathode morphology, and electrochemical cell performance. We find that cathodes with a ridged interface, produced from the filamentary extrusion of highly concentrated FeS inks (60-70% solids w/w%), exhibit optimal power, uniformity, and stability when cycled at higher rates (in excess of C/10). Meanwhile, cells with custom-form, wave-shaped electrodes (printed FeS cathodes and pressed lithium anodes) are demonstrated and shown to exhibit similar performance to comparable cells in planar configurations, demonstrating the feasibility of printing onto complex geometries. Overall, the DIW printing of FeS inks is shown to be a viable path toward the making of custom-form conversion lithium batteries. More broadly, ridging is found to optimize rate capability, a finding that may have a broad impact beyond FeS and syringe extrusion.
增材制造能够制造出非常规形状的电池,由于提高了设备中电源的材料堆积效率,从而实现更高的实际能量密度。此外,通过从传统锂离子电池材料过渡到锂金属负极和转换型正极,可以提高能量密度。二硫化铁(FeS)是一种具有商业价值的重要转换型正极;然而,用于定制形状电池应用的FeS油墨的直接墨水书写(DIW)印刷尚未得到证实或优化。在这项工作中,使用FeS油墨的DIW印刷来系统地研究油墨固体浓度对流变学、在任意表面上的膜形状保持、正极形态和电化学电池性能的影响。我们发现,由高浓度FeS油墨(60 - 70%固体重量/重量%)的丝状挤出产生的具有脊状界面的正极,在较高倍率(超过C/10)下循环时表现出最佳的功率、均匀性和稳定性。同时,展示了具有定制形状、波浪形电极(印刷的FeS正极和压制的锂负极)的电池,并表明其性能与平面配置中的可比电池相似,证明了在复杂几何形状上印刷的可行性。总体而言,FeS油墨的DIW印刷被证明是制造定制形状转换锂电池的可行途径。更广泛地说,发现脊状结构可优化倍率性能,这一发现可能对FeS和注射器挤出之外的领域产生广泛影响。