Li Sihang, Yu Jiacheng, Li Mingxuan, Liu Le, Zhang Xiaolong Luke, Yuan Xiaoru
IEEE Trans Vis Comput Graph. 2023 Jan;29(1):353-362. doi: 10.1109/TVCG.2022.3209482. Epub 2022 Dec 16.
Multiclass contour visualization is often used to interpret complex data attributes in such fields as weather forecasting, computational fluid dynamics, and artificial intelligence. However, effective and accurate representations of underlying data patterns and correlations can be challenging in multiclass contour visualization, primarily due to the inevitable visual cluttering and occlusions when the number of classes is significant. To address this issue, visualization design must carefully choose design parameters to make visualization more comprehensible. With this goal in mind, we proposed a framework for multiclass contour visualization. The framework has two components: a set of four visualization design parameters, which are developed based on an extensive review of literature on contour visualization, and a declarative domain-specific language (DSL) for creating multiclass contour rendering, which enables a fast exploration of those design parameters. A task-oriented user study was conducted to assess how those design parameters affect users' interpretations of real-world data. The study results offered some suggestions on the value choices of design parameters in multiclass contour visualization.
多类轮廓可视化常用于解释天气预报、计算流体动力学和人工智能等领域中的复杂数据属性。然而,在多类轮廓可视化中,要有效且准确地呈现潜在的数据模式和相关性可能具有挑战性,主要原因是当类别数量较多时不可避免地会出现视觉混乱和遮挡。为了解决这个问题,可视化设计必须仔细选择设计参数以使可视化更易于理解。出于这个目标,我们提出了一个多类轮廓可视化框架。该框架有两个组件:一组四个可视化设计参数,这是在对轮廓可视化文献进行广泛综述的基础上开发的;以及一种用于创建多类轮廓渲染的声明式领域特定语言(DSL),它能够快速探索这些设计参数。进行了一项面向任务的用户研究,以评估这些设计参数如何影响用户对真实世界数据的解读。研究结果为多类轮廓可视化中设计参数的取值选择提供了一些建议。