Esra Rachel, Carstens Jacques, Le Roux Sue, Mabuto Tonderai, Eisenstein Michael, Keiser Olivia, Orel Erol, Merzouki Aziza, De Voux Lucien, Maskew Mhari, Sharpey-Schafer Kieran
University of Geneva, Institute of Global Health, Genève, Switzerland.
Imperial College of London, United Kingdom.
J Acquir Immune Defic Syndr. 2023 Jan 1;92(1):42-49. doi: 10.1097/QAI.0000000000003108.
Machine learning algorithms are increasingly being used to inform HIV prevention and detection strategies. We validated and extended a previously developed machine learning model for patient retention on antiretroviral therapy in a new geographic catchment area in South Africa.
We compared the ability of an adaptive boosting algorithm to predict interruption in treatment (IIT) in 2 South African cohorts from the Free State and Mpumalanga and Gauteng and North West (GA/NW) provinces. We developed a novel set of predictive features for the GA/NW cohort using a categorical boosting model. We evaluated the ability of the model to predict IIT over all visits and across different periods within a patient's treatment trajectory.
When predicting IIT, the GA/NW and Free State and Mpumalanga models demonstrated a sensitivity of 60% and 61%, respectively, able to correctly predict nearly two-thirds of all missed visits with a positive predictive value of 18% and 19%. Using predictive features generated from the GA/NW cohort, the categorical boosting model correctly predicted 22,119 of a total of 35,985 missed next visits, yielding a sensitivity of 62%, specificity of 67%, and positive predictive value of 20%. Model performance was highest when tested on visits within the first 6 months.
Machine learning algorithms may be useful in informing tools to increase antiretroviral therapy patient retention and efficiency of HIV care interventions. This is particularly relevant in developing countries where health data systems are being strengthened to collect data on a scale that is large enough to apply novel analytical methods.
机器学习算法越来越多地被用于为艾滋病病毒(HIV)预防和检测策略提供信息。我们在南非一个新的地理区域验证并扩展了先前开发的用于预测抗逆转录病毒治疗患者留存率的机器学习模型。
我们比较了自适应增强算法在南非自由邦省、姆普马兰加省以及豪登省和西北省(GA/NW)的两个队列中预测治疗中断(IIT)的能力。我们使用分类增强模型为GA/NW队列开发了一组新的预测特征。我们评估了该模型在患者治疗轨迹的所有就诊期间以及不同时间段内预测IIT的能力。
在预测IIT时,GA/NW队列模型和自由邦省与姆普马兰加省队列模型的灵敏度分别为60%和61%,能够正确预测近三分之二的所有漏诊就诊,阳性预测值分别为18%和19%。使用从GA/NW队列生成的预测特征,分类增强模型在总共35,985次漏诊的下次就诊中正确预测了22,119次,灵敏度为62%,特异度为67%,阳性预测值为20%。在前6个月内的就诊中进行测试时,模型性能最高。
机器学习算法可能有助于为提高抗逆转录病毒治疗患者留存率和HIV护理干预效率的工具提供信息。这在发展中国家尤为重要,因为这些国家正在加强卫生数据系统,以收集足够规模的数据来应用新的分析方法。