Xie Yu, Liu Guanjun, Yan Chungang, Jiang Changjun, Zhou Mengchu, Li Maozhen
IEEE Trans Neural Netw Learn Syst. 2024 Apr;35(4):5735-5748. doi: 10.1109/TNNLS.2022.3208967. Epub 2024 Apr 4.
Credit card fraud detection is a challenging task since fraudulent actions are hidden in massive legitimate behaviors. This work aims to learn a new representation for each transaction record based on the historical transactions of users in order to capture fraudulent patterns accurately and, thus, automatically detect a fraudulent transaction. We propose a novel model by improving long short-term memory with a time-aware gate that can capture the behavioral changes caused by consecutive transactions of users. A current-historical attention module is designed to build up connections between current and historical transactional behaviors, which enables the model to capture behavioral periodicity. An interaction module is designed to learn comprehensive and rational behavioral representations. To validate the effectiveness of the learned behavioral representations, experiments are conducted on a large real-world transaction dataset provided to us by a financial company in China, as well as a public dataset. Experimental results and the visualization of the learned representations illustrate that our method delivers a clear distinction between legitimate behaviors and fraudulent ones, and achieves better fraud detection performance compared with the state-of-the-art methods.
信用卡欺诈检测是一项具有挑战性的任务,因为欺诈行为隐藏在大量合法行为之中。这项工作旨在基于用户的历史交易记录为每个交易记录学习一种新的表示形式,以便准确捕捉欺诈模式,从而自动检测出欺诈交易。我们提出了一种新颖的模型,通过一个时间感知门改进长短期记忆,该门能够捕捉用户连续交易引起的行为变化。设计了一个当前-历史注意力模块来建立当前和历史交易行为之间的联系,这使得模型能够捕捉行为周期性。设计了一个交互模块来学习全面且合理的行为表示。为了验证所学习的行为表示的有效性,我们在中国一家金融公司提供给我们的大型真实世界交易数据集以及一个公共数据集上进行了实验。实验结果以及所学习表示的可视化表明,我们的方法能够清晰地区分合法行为和欺诈行为,并且与现有最先进的方法相比,实现了更好的欺诈检测性能。