Panse Kaustubh S, Wu Haiyi, Zhou Shan, Zhao Fujia, Aluru Narayana R, Zhang Yingjie
Department of Materials Science and Engineering, University of Illinois, Urbana, Illinois61801, United States.
Materials Research Laboratory, University of Illinois, Urbana, Illinois61801, United States.
J Phys Chem Lett. 2022 Oct 13;13(40):9464-9472. doi: 10.1021/acs.jpclett.2c02768. Epub 2022 Oct 5.
The structure of electric double layers (EDLs) is crucial for all types of electrochemical processes. While in dilute solutions EDL structure can be approximately treated within the Gouy-Chapman-Stern regime, in highly ionic electrolytes the description of EDL has been largely elusive. Here we study the EDL structure of an ionic liquid on a series of crystalline electrodes. Through molecular dynamics (MD) simulations, we observe strong intermolecular interaction among cations and anions and propose that the cation-anion association structure at the innermost layer is a key descriptor of the EDL. Using our recently developed electrochemical 3D atomic force microscopy (EC-3D-AFM) technique, we confirm the theoretical prediction and further find that the width of the first EDL is an experimental gauge of the ion association structure in that layer. We expect such ion association descriptors to be broadly applicable to a large range of highly ionic electrolytes on various electrode surfaces.
双电层(EDL)的结构对于所有类型的电化学过程都至关重要。在稀溶液中,双电层结构可以在 Gouy-Chapman-Stern 理论框架内进行近似处理,而在高离子强度的电解质中,双电层的描述在很大程度上仍然难以捉摸。在此,我们研究了一系列晶体电极上离子液体的双电层结构。通过分子动力学(MD)模拟,我们观察到阳离子和阴离子之间存在强烈的分子间相互作用,并提出最内层的阳离子-阴离子缔合结构是双电层的关键描述符。使用我们最近开发的电化学三维原子力显微镜(EC-3D-AFM)技术,我们证实了理论预测,并进一步发现第一个双电层的宽度是该层中离子缔合结构的实验衡量标准。我们期望这种离子缔合描述符能够广泛应用于各种电极表面上的大量高离子强度电解质。