Suppr超能文献

临床试验现状更新:对 2000 年至 2020 年 ClinicalTrials.gov 注册数据的分析。

Update on the clinical trial landscape: analysis of ClinicalTrials.gov registration data, 2000-2020.

机构信息

Department of Medicine, Cedars-Sinai Medical Center, 700 N. San Vincente Blvd, Los Angeles, CA, 90048, USA.

Center for Clinical Trials and Evidence Synthesis, Johns Hopkins University, Baltimore, USA.

出版信息

Trials. 2022 Oct 6;23(1):858. doi: 10.1186/s13063-022-06569-2.

Abstract

BACKGROUND

The clinical trial landscape has evolved over the last two decades, shaped by advances in therapeutics and drug development and innovation in trial design and methods. The tracking of such changes became possible with trial registration, providing the public with a window into the massive clinical research enterprise. The ClinicalTrials.gov website was launched in 2000 by the NIH National Library of Medicine and is the largest clinical trial registry worldwide. The purpose of this analysis is to describe the composition and methodologic features of clinical trials as registered on ClinicalTrials.gov and to identify trends over time.

METHODS

We analyzed data from the publicly available Clinical Trials Transformation Initiative Aggregate Analysis of ClinicalTrials.gov (AACT) database, focusing on trials (interventional studies) started between 1 January 2000 through 31 December 2020. Characteristics of design (e.g., phase, randomization, use of masking, number of treatment groups, sample size), eligibility criteria (age groups, gender), interventions, conditions, and funders (primary sponsor) were tabulated over time, by year trial started.

RESULTS

There were 274,043 registered interventional studies (trials) included in the analysis. Most trials were reported as randomized (65%); single site (60%); parallel-group (56%); funded by other sources (e.g., individuals, universities, and community-based organizations) (65%); and involving drug interventions (55%). Notable trends include an increase in the proportion of registered trials without FDA-defined phases ("Phase N/A") over time, a decrease in proportion of trials that involve drugs or report treatment as a primary purpose, declining sample size and time to complete trials, and an increase in proportion of trials reporting results among completed trials. The proportion of missing registration fields has also decreased over time and more trials make protocols and other documents available. There is a current need to expand the registration fields in ClinicalTrials.gov to adapt to the evolving trial designs and reduce the number of trials categorized as "other." Observed trends may be explained by changes in trial regulations as well as expanding and evolving trial designs, interventions, and outcome types.

CONCLUSIONS

Clinical trial registration has transformed how trial information is accessed, disseminated, and used. As clinical trials evolve and regulations change, trial registries, including ClinicalTrials.gov, will continue to provide a means to access and follow trials over time, thus informing future trial design and highlighting the value of this tremendous resource.

摘要

背景

在过去的二十年中,随着治疗方法和药物开发的进步以及试验设计和方法的创新,临床试验领域发生了变化。通过试验注册,公众可以了解大规模临床研究企业,从而使这种变化的跟踪成为可能。NIH 国家医学图书馆于 2000 年推出了 ClinicalTrials.gov 网站,是全球最大的临床试验注册库。本分析的目的是描述 ClinicalTrials.gov 上注册的临床试验的组成和方法特征,并确定随时间的变化趋势。

方法

我们分析了来自公开的 ClinicalTrials.gov 转化临床试验倡议综合分析(AACT)数据库的数据,重点是 2000 年 1 月 1 日至 2020 年 12 月 31 日期间开始的试验(干预性研究)。按试验开始年份逐年列出设计特征(如阶段、随机化、使用掩蔽、治疗组数量、样本量)、纳入标准(年龄组、性别)、干预措施、疾病和资助者(主要赞助商)。

结果

分析中包含 274,043 项注册的干预性研究(试验)。大多数试验报告为随机(65%);单站点(60%);平行组(56%);由其他来源(如个人、大学和社区组织)资助(65%);涉及药物干预(55%)。值得注意的趋势包括随着时间的推移,注册试验中没有 FDA 定义阶段的比例(“阶段 N/A”)增加,涉及药物或报告治疗为主要目的的试验比例下降,试验完成时间和样本量减少,以及报告完成试验中结果的试验比例增加。注册字段缺失的比例也随着时间的推移而降低,并且更多的试验提供了方案和其他文件。目前需要扩展 ClinicalTrials.gov 的注册字段,以适应不断发展的试验设计,并减少被归类为“其他”的试验数量。观察到的趋势可能是由于试验法规的变化以及试验设计、干预措施和结果类型的不断发展。

结论

临床试验注册改变了人们获取、传播和使用试验信息的方式。随着临床试验的发展和法规的变化,临床试验注册库,包括 ClinicalTrials.gov,将继续为随着时间的推移访问和跟踪试验提供一种手段,从而为未来的试验设计提供信息,并突出这一巨大资源的价值。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/8695/9540715/4062b863961d/13063_2022_6569_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验