Suppr超能文献

基于自解缠的结构感知无监督标记到电影MRI合成

Structure-aware Unsupervised Tagged-to-Cine MRI Synthesis with Self Disentanglement.

作者信息

Liu Xiaofeng, Xing Fangxu, Prince Jerry L, Stone Maureen, El Fakhri Georges, Woo Jonghye

机构信息

Gordon Center for Medical Imaging, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02114 USA.

Deportment of Electrical and Computer Engineering, Johns Hopkins University, Baltimore, MD 21218 USA.

出版信息

Proc SPIE Int Soc Opt Eng. 2022 Feb-Mar;12032. doi: 10.1117/12.2610655. Epub 2022 Apr 4.

Abstract

Cycle reconstruction regularized adversarial training-e.g., CycleGAN, DiscoGAN, and DualGAN-has been widely used for image style transfer with unpaired training data. Several recent works, however, have shown that local distortions are frequent, and structural consistency cannot be guaranteed. Targeting this issue, prior works usually relied on additional segmentation or consistent feature extraction steps that are task-specific. To counter this, this work aims to learn a general add-on structural feature extractor, by explicitly enforcing the structural alignment between an input and its synthesized image. Specifically, we propose a novel input-output image patches self-training scheme to achieve a disentanglement of underlying anatomical structures and imaging modalities. The translator and structure encoder are updated, following an alternating training protocol. In addition, the information w.r.t. imaging modality can be eliminated with an asymmetric adversarial game. We train, validate, and test our network on 1,768, 416, and 1,560 unpaired subject-independent slices of tagged and cine magnetic resonance imaging from a total of twenty healthy subjects, respectively, demonstrating superior performance over competing methods.

摘要

循环重建正则化对抗训练(例如CycleGAN、DiscoGAN和DualGAN)已广泛用于利用未配对训练数据进行图像风格迁移。然而,最近的一些工作表明,局部失真很常见,并且无法保证结构一致性。针对这个问题,先前的工作通常依赖于特定于任务的额外分割或一致特征提取步骤。为了解决这个问题,这项工作旨在通过明确强制输入与其合成图像之间的结构对齐来学习一个通用的附加结构特征提取器。具体来说,我们提出了一种新颖的输入-输出图像块自训练方案,以实现潜在解剖结构和成像模态的解缠。翻译器和结构编码器按照交替训练协议进行更新。此外,可以通过非对称对抗博弈消除与成像模态相关的信息。我们分别在来自总共20名健康受试者的1768、416和1560个未配对的独立于受试者的标记和电影磁共振成像切片上训练、验证和测试我们的网络,证明了优于竞争方法的性能。

相似文献

1
Structure-aware Unsupervised Tagged-to-Cine MRI Synthesis with Self Disentanglement.
Proc SPIE Int Soc Opt Eng. 2022 Feb-Mar;12032. doi: 10.1117/12.2610655. Epub 2022 Apr 4.
2
DUAL-CYCLE CONSTRAINED BIJECTIVE VAE-GAN FOR TAGGED-TO-CINE MAGNETIC RESONANCE IMAGE SYNTHESIS.
Proc IEEE Int Symp Biomed Imaging. 2021 Apr;2021. doi: 10.1109/isbi48211.2021.9433852. Epub 2021 May 25.
4
A UNIFIED CONDITIONAL DISENTANGLEMENT FRAMEWORK FOR MULTIMODAL BRAIN MR IMAGE TRANSLATION.
Proc IEEE Int Symp Biomed Imaging. 2021 Apr;2021. doi: 10.1109/isbi48211.2021.9433897.
5
CMRI2SPEC: CINE MRI SEQUENCE TO SPECTROGRAM SYNTHESIS VIA A PAIRWISE HETEROGENEOUS TRANSLATOR.
Proc IEEE Int Conf Acoust Speech Signal Process. 2022 May;2022:1481-1485. doi: 10.1109/icassp43922.2022.9746381. Epub 2022 Apr 27.
6
Exploring Explicit Domain Supervision for Latent Space Disentanglement in Unpaired Image-to-Image Translation.
IEEE Trans Pattern Anal Mach Intell. 2021 Apr;43(4):1254-1266. doi: 10.1109/TPAMI.2019.2950198. Epub 2021 Mar 5.
7
Disentangled representation and cross-modality image translation based unsupervised domain adaptation method for abdominal organ segmentation.
Int J Comput Assist Radiol Surg. 2022 Jun;17(6):1101-1113. doi: 10.1007/s11548-022-02590-7. Epub 2022 Mar 17.
9
Attentive continuous generative self-training for unsupervised domain adaptive medical image translation.
Med Image Anal. 2023 Aug;88:102851. doi: 10.1016/j.media.2023.102851. Epub 2023 May 29.
10
Common feature learning for brain tumor MRI synthesis by context-aware generative adversarial network.
Med Image Anal. 2022 Jul;79:102472. doi: 10.1016/j.media.2022.102472. Epub 2022 May 4.

引用本文的文献

1
Tagged-to-Cine MRI Sequence Synthesis via Light Spatial-Temporal Transformer.
Med Image Comput Comput Assist Interv. 2024 Oct;15007:701-711. doi: 10.1007/978-3-031-72104-5_67. Epub 2024 Oct 3.
2
Tagged-MRI Sequence to Audio Synthesis via Self Residual Attention Guided Heterogeneous Translator.
Med Image Comput Comput Assist Interv. 2022 Sep;13436:376-386. doi: 10.1007/978-3-031-16446-0_36. Epub 2022 Sep 17.
3
Brain MR Atlas Construction Using Symmetric Deep Neural Inpainting.
IEEE J Biomed Health Inform. 2022 Jul;26(7):3185-3196. doi: 10.1109/JBHI.2022.3149754. Epub 2022 Jul 1.

本文引用的文献

1
Measuring Strain in Diffusion-Weighted Data Using Tagged Magnetic Resonance Imaging.
Proc SPIE Int Soc Opt Eng. 2022 Feb-Mar;12032. doi: 10.1117/12.2610989. Epub 2022 Apr 4.
2
Segmentation of Cardiac Structures via Successive Subspace Learning with Saab Transform from Cine MRI.
Annu Int Conf IEEE Eng Med Biol Soc. 2021 Nov;2021:3535-3538. doi: 10.1109/EMBC46164.2021.9629770.
3
Generative Self-training for Cross-domain Unsupervised Tagged-to-Cine MRI Synthesis.
Med Image Comput Comput Assist Interv. 2021;12903:138-148. doi: 10.1007/978-3-030-87199-4_13. Epub 2021 Sep 21.
4
DUAL-CYCLE CONSTRAINED BIJECTIVE VAE-GAN FOR TAGGED-TO-CINE MAGNETIC RESONANCE IMAGE SYNTHESIS.
Proc IEEE Int Symp Biomed Imaging. 2021 Apr;2021. doi: 10.1109/isbi48211.2021.9433852. Epub 2021 May 25.
5
A UNIFIED CONDITIONAL DISENTANGLEMENT FRAMEWORK FOR MULTIMODAL BRAIN MR IMAGE TRANSLATION.
Proc IEEE Int Symp Biomed Imaging. 2021 Apr;2021. doi: 10.1109/isbi48211.2021.9433897.
6
Mutual Information Regularized Feature-Level Frankenstein for Discriminative Recognition.
IEEE Trans Pattern Anal Mach Intell. 2022 Sep;44(9):5243-5260. doi: 10.1109/TPAMI.2021.3077397. Epub 2022 Aug 4.
7
Unsupervised MR-to-CT Synthesis Using Structure-Constrained CycleGAN.
IEEE Trans Med Imaging. 2020 Dec;39(12):4249-4261. doi: 10.1109/TMI.2020.3015379. Epub 2020 Nov 30.
8
Unpaired Deep Cross-Modality Synthesis with Fast Training.
Deep Learn Med Image Anal Multimodal Learn Clin Decis Support (2018). 2018 Sep;11045:155-164. doi: 10.1007/978-3-030-00889-5_18. Epub 2018 Sep 20.
9
Analysis of 3-D Tongue Motion From Tagged and Cine Magnetic Resonance Images.
J Speech Lang Hear Res. 2016 Jun 1;59(3):468-79. doi: 10.1044/2016_JSLHR-S-14-0155.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验