Suppr超能文献

中肾管间充质对女性生殖道形成的贡献。

Contribution of the Wolffian duct mesenchyme to the formation of the female reproductive tract.

作者信息

Zhao Fei, Grimm Sara A, Jia Shua, Yao Humphrey Hung-Chang

机构信息

Reproductive Developmental Biology Group, National Institute of Environmental Health Sciences, Research Triangle Park, NC 27709, USA.

Integrative Bioinformatics Support Group, National Institute of Environmental Health Sciences, Research Triangle Park, NC 27709, USA.

出版信息

PNAS Nexus. 2022 Sep 13;1(4):pgac182. doi: 10.1093/pnasnexus/pgac182. eCollection 2022 Sep.

Abstract

The female reproductive tract develops from its embryonic precursor, the Müllerian duct. In close proximity to the Müllerian duct lies the precursor for the male reproductive tract, the Wolffian duct, which is eliminated in the female embryo during sexual differentiation. We discovered that a component of the Wolffian duct, its mesenchyme, is not eliminated after sexual differentiation. Instead, the Wolffian duct mesenchyme underwent changes in transcriptome and chromatin accessibility from male tract to female tract identity, and became a unique mesenchymal population in the female reproductive tract with localization and transcriptome distinct from the mesenchyme derived from the Müllerian duct. Partial ablation of the Wolffian duct mesenchyme stunted the growth of the fetal female reproductive tract in ex vivo organ culture. These findings reveal a new fetal origin of mesenchymal tissues for female reproductive tract formation and reshape our understanding of sexual differentiation of reproductive tracts.

摘要

女性生殖道由其胚胎前体苗勒管发育而来。在苗勒管附近是男性生殖道的前体沃尔夫管,在性别分化过程中,女性胚胎中的沃尔夫管会被消除。我们发现,沃尔夫管的一个组成部分,即其间充质,在性别分化后并未被消除。相反,沃尔夫管间充质的转录组和染色质可及性从男性生殖道特征转变为女性生殖道特征,并成为女性生殖道中一个独特的间充质群体,其定位和转录组与苗勒管来源的间充质不同。在体外器官培养中,部分切除沃尔夫管间充质会阻碍胎儿女性生殖道的生长。这些发现揭示了女性生殖道形成中间充质组织的一个新的胎儿来源,并重塑了我们对生殖道性别分化的理解。

相似文献

1
Contribution of the Wolffian duct mesenchyme to the formation of the female reproductive tract.
PNAS Nexus. 2022 Sep 13;1(4):pgac182. doi: 10.1093/pnasnexus/pgac182. eCollection 2022 Sep.
3
Ex vivo development of the entire mouse fetal reproductive tract by using microdissection and membrane-based organ culture techniques.
Differentiation. 2022 Jan-Feb;123:42-49. doi: 10.1016/j.diff.2022.01.001. Epub 2022 Jan 6.
5
A gene regulatory network for Müllerian duct regression.
Environ Epigenet. 2019 Sep 25;5(3):dvz017. doi: 10.1093/eep/dvz017. eCollection 2019 Jul.
6
SMAD2/3 signaling regulates initiation of mouse Wolffian ducts and proximal differentiation in Müllerian ducts.
FEBS Open Bio. 2024 Jan;14(1):37-50. doi: 10.1002/2211-5463.13729. Epub 2023 Nov 20.
7
Elimination of the male reproductive tract in the female embryo is promoted by COUP-TFII in mice.
Science. 2017 Aug 18;357(6352):717-720. doi: 10.1126/science.aai9136.

引用本文的文献

1
Crucial roles of mesenchymal in murine epididymal development.
bioRxiv. 2025 Mar 29:2025.03.26.645498. doi: 10.1101/2025.03.26.645498.
2
Clinical utility of anti-Müllerian hormone in female children and adolescents.
Hormones (Athens). 2025 Mar;24(1):179-188. doi: 10.1007/s42000-024-00603-5. Epub 2024 Oct 31.
4
Crucial Roles of the Mesenchymal Androgen Receptor in Wolffian Duct Development.
Endocrinology. 2023 Dec 23;165(2). doi: 10.1210/endocr/bqad193.
5
SMAD2/3 signaling regulates initiation of mouse Wolffian ducts and proximal differentiation in Müllerian ducts.
FEBS Open Bio. 2024 Jan;14(1):37-50. doi: 10.1002/2211-5463.13729. Epub 2023 Nov 20.
6
Epithelial and mesenchymal fate decisions in Wolffian duct development.
Trends Endocrinol Metab. 2023 Aug;34(8):462-473. doi: 10.1016/j.tem.2023.05.007. Epub 2023 Jun 15.

本文引用的文献

1
Mechanistic Drivers of Müllerian Duct Development and Differentiation Into the Oviduct.
Front Cell Dev Biol. 2021 Mar 8;9:605301. doi: 10.3389/fcell.2021.605301. eCollection 2021.
2
6
Uterine Glands: Developmental Biology and Functional Roles in Pregnancy.
Endocr Rev. 2019 Oct 1;40(5):1424-1445. doi: 10.1210/er.2018-00281.
8
Single cell RNA-seq study of wild type and Hox9,10,11 mutant developing uterus.
Sci Rep. 2019 Mar 14;9(1):4557. doi: 10.1038/s41598-019-40923-w.
9
Chromatin accessibility and the regulatory epigenome.
Nat Rev Genet. 2019 Apr;20(4):207-220. doi: 10.1038/s41576-018-0089-8.
10
Mouse Genome Database (MGD) 2019.
Nucleic Acids Res. 2019 Jan 8;47(D1):D801-D806. doi: 10.1093/nar/gky1056.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验