Suppr超能文献

基于 CT 图像的个体化主动脉瓣半自动构建。

Semi-Automated Construction of Patient-Specific Aortic Valves from Computed Tomography Images.

机构信息

Division of Cardiology, Department of Pediatrics, Baylor College of Medicine and Texas Children's Hospital, Houston, TX, USA.

Department of Mechanical Engineering, Rice University, Houston, TX, USA.

出版信息

Ann Biomed Eng. 2023 Jan;51(1):189-199. doi: 10.1007/s10439-022-03075-z. Epub 2022 Oct 8.

Abstract

This paper presents a semi-automatic method for the construction of volumetric models of the aortic valve using computed tomography angiography images. Although the aortic valve typically cannot be segmented directly from a computed tomography angiography image, the method described herein uses manually selected samples of an aortic segmentation derived from this image to inform the construction. These samples capture certain physiologic landmarks and are used to construct a volumetric valve model. As a demonstration of the capabilities of this method, valve models for 25 pediatric patients are created. A selected valve anatomy is used to perform fluid-structure interaction simulations using the immersed finite element/difference method with physiologic driving and loading conditions. Simulation results demonstrate this method creates a functional valve that opens and closes normally and generates pressure and flow waveforms that are similar to those observed clinically.

摘要

本文提出了一种使用计算机断层血管造影图像构建主动脉瓣容积模型的半自动方法。尽管主动脉瓣通常不能直接从计算机断层血管造影图像中分割出来,但本文所述的方法使用从该图像中提取的主动脉分割的手动选择样本来提供构建信息。这些样本捕获了某些生理标志,并用于构建容积瓣模型。作为该方法能力的演示,为 25 名儿科患者创建了瓣模型。使用浸入有限元/差分法,选择特定的瓣解剖结构,根据生理驱动和加载条件进行流固耦合模拟。模拟结果表明,该方法创建的功能性瓣能够正常开闭,并产生与临床观察到的相似的压力和流量波形。

相似文献

1
Semi-Automated Construction of Patient-Specific Aortic Valves from Computed Tomography Images.
Ann Biomed Eng. 2023 Jan;51(1):189-199. doi: 10.1007/s10439-022-03075-z. Epub 2022 Oct 8.
2
Image-based immersed boundary model of the aortic root.
Med Eng Phys. 2017 Sep;47:72-84. doi: 10.1016/j.medengphy.2017.05.007. Epub 2017 Aug 2.
3
Patient-Specific Immersed Finite Element-Difference Model of Transcatheter Aortic Valve Replacement.
Ann Biomed Eng. 2023 Jan;51(1):103-116. doi: 10.1007/s10439-022-03047-3. Epub 2022 Oct 20.
4
A patient-specific aortic valve model based on moving resistive immersed implicit surfaces.
Biomech Model Mechanobiol. 2017 Oct;16(5):1779-1803. doi: 10.1007/s10237-017-0919-1. Epub 2017 Jun 7.
6
On the Modeling of Patient-Specific Transcatheter Aortic Valve Replacement: A Fluid-Structure Interaction Approach.
Cardiovasc Eng Technol. 2019 Sep;10(3):437-455. doi: 10.1007/s13239-019-00427-0. Epub 2019 Jul 15.
7
A design-based model of the aortic valve for fluid-structure interaction.
Biomech Model Mechanobiol. 2021 Dec;20(6):2413-2435. doi: 10.1007/s10237-021-01516-7. Epub 2021 Sep 21.
8
Does clinical data quality affect fluid-structure interaction simulations of patient-specific stenotic aortic valve models?
J Biomech. 2019 Sep 20;94:202-210. doi: 10.1016/j.jbiomech.2019.07.047. Epub 2019 Aug 7.
9
Fluid-structure interaction of a pulsatile flow with an aortic valve model: A combined experimental and numerical study.
Int J Numer Method Biomed Eng. 2018 Apr;34(4):e2945. doi: 10.1002/cnm.2945. Epub 2018 Jan 25.
10
Immersed boundary model of aortic heart valve dynamics with physiological driving and loading conditions.
Int J Numer Method Biomed Eng. 2012 Mar;28(3):317-45. doi: 10.1002/cnm.1445.

引用本文的文献

1
Anomalous Aortic Origin of a Coronary Artery in Pediatric Patients.
Curr Pediatr Rep. 2024;12(3):69-80. doi: 10.1007/s40124-024-00317-7. Epub 2024 May 24.

本文引用的文献

1
Texas TriValve 1.0 : a reverse‑engineered, open model of the human tricuspid valve.
Eng Comput. 2022 Oct;38(5):3835-3848. doi: 10.1007/s00366-022-01659-w. Epub 2022 May 24.
2
Image Registration-Based Method for Reconstructing Transcatheter Heart Valve Geometry from Patient-Specific CT Scans.
Ann Biomed Eng. 2022 Jul;50(7):805-815. doi: 10.1007/s10439-022-02962-9. Epub 2022 Apr 15.
3
Patient-Specific Quantification of Normal and Bicuspid Aortic Valve Leaflet Deformations from Clinically Derived Images.
Ann Biomed Eng. 2022 Jan;50(1):1-15. doi: 10.1007/s10439-021-02882-0. Epub 2022 Jan 7.
4
A design-based model of the aortic valve for fluid-structure interaction.
Biomech Model Mechanobiol. 2021 Dec;20(6):2413-2435. doi: 10.1007/s10237-021-01516-7. Epub 2021 Sep 21.
5
Parameterization, geometric modeling, and isogeometric analysis of tricuspid valves.
Comput Methods Appl Mech Eng. 2021 Oct 1;384. doi: 10.1016/j.cma.2021.113960. Epub 2021 Jun 17.
6
Fluid-Structure Interaction Models of Bioprosthetic Heart Valve Dynamics in an Experimental Pulse Duplicator.
Ann Biomed Eng. 2020 May;48(5):1475-1490. doi: 10.1007/s10439-020-02466-4. Epub 2020 Feb 7.
7
Modeling the mitral valve.
Int J Numer Method Biomed Eng. 2019 Nov;35(11):e3240. doi: 10.1002/cnm.3240.
8
Pediatric heterozygous familial hypercholesterolemia patients have locally increased aortic pulse wave velocity and wall thickness at the aortic root.
Int J Cardiovasc Imaging. 2019 Oct;35(10):1903-1911. doi: 10.1007/s10554-019-01626-5. Epub 2019 Jun 17.
9
Multi-resolution geometric modeling of the mitral heart valve leaflets.
Biomech Model Mechanobiol. 2018 Apr;17(2):351-366. doi: 10.1007/s10237-017-0965-8. Epub 2017 Oct 5.
10
Image-based immersed boundary model of the aortic root.
Med Eng Phys. 2017 Sep;47:72-84. doi: 10.1016/j.medengphy.2017.05.007. Epub 2017 Aug 2.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验