Skoven Christian Stald, Tomasevic Leo, Kvitsiani Duda, Pakkenberg Bente, Dyrby Tim Bjørn, Siebner Hartwig Roman
Danish Research Centre for Magnetic Resonance, Centre for Functional and Diagnostic Imaging and Research, Copenhagen University Hospital Amager and Hvidovre, Copenhagen, Denmark.
Center for Functional Integrative Neuroscience, Aarhus University (AU), Aarhus, Denmark.
Front Neurosci. 2022 Sep 23;16:968839. doi: 10.3389/fnins.2022.968839. eCollection 2022.
Efficient interhemispheric integration of neural activity between left and right primary motor cortex (M1) is critical for inter-limb motor control. We employed optogenetic stimulation to establish a framework for probing transcallosal M1-M1 interactions in rats. We performed optogenetic stimulation of excitatory neurons in right M1 of male Sprague-Dawley rats. We recorded the transcallosal evoked potential in contralateral left M1 via chronically implanted electrodes. Recordings were performed under anesthesia combination of dexmedetomidine and a low concentration of isoflurane. We systematically varied the stimulation intensity and duration to characterize the relationship between stimulation parameters in right M1 and the characteristics of the evoked intracortical potentials in left M1. Optogenetic stimulation of right M1 consistently evoked a transcallosal response in left M1 with a consistent negative peak (N1) that sometimes was preceded by a smaller positive peak (P1). Higher stimulation intensity or longer stimulation duration gradually increased N1 amplitude and reduced N1 variability across trials. A combination of stimulation intensities of 5-10 mW with stimulus durations of 1-10 ms were generally sufficient to elicit a robust transcallosal response in most animal, with our optic fiber setup. Optogenetically stimulated excitatory neurons in M1 can reliably evoke a transcallosal response in anesthetized rats. Characterizing the relationship between "stimulation dose" and "response magnitude" (i.e., the gain function) of transcallosal M1-to-M1 excitatory connections can be used to optimize the variables of optogenetic stimulation and ensure stimulation efficacy.
左右初级运动皮层(M1)之间神经活动的高效半球间整合对于肢体间运动控制至关重要。我们采用光遗传学刺激来建立一个探究大鼠胼胝体M1 - M1相互作用的框架。我们对雄性Sprague - Dawley大鼠右侧M1中的兴奋性神经元进行光遗传学刺激。通过长期植入的电极记录对侧左侧M1中的胼胝体诱发电位。记录在右美托咪定和低浓度异氟烷的麻醉组合下进行。我们系统地改变刺激强度和持续时间,以表征右侧M1中的刺激参数与左侧M1中诱发的皮质内电位特征之间的关系。右侧M1的光遗传学刺激始终在左侧M1中诱发胼胝体反应,具有一致的负峰(N1),有时之前会有一个较小的正峰(P1)。更高的刺激强度或更长的刺激持续时间会逐渐增加N1幅度并降低试验间N1的变异性。在我们的光纤设置下,5 - 10 mW的刺激强度与1 - 10 ms的刺激持续时间的组合通常足以在大多数动物中引发强烈的胼胝体反应。M1中光遗传学刺激的兴奋性神经元能够在麻醉大鼠中可靠地诱发胼胝体反应。表征胼胝体M1到M1兴奋性连接的“刺激剂量”与“反应幅度”(即增益函数)之间的关系可用于优化光遗传学刺激的变量并确保刺激效果。