Suppr超能文献

不同生物陶瓷在丙烯酰化胶原蛋白水凝胶中骨生物活性和成骨潜力的比较研究。

A comparative study of bone bioactivity and osteogenic potential of different bioceramics in methacrylated collagen hydrogels.

机构信息

Department of Biomedical and Chemical Engineering and Sciences, Florida Institute of Technology, Melbourne, Florida, USA.

出版信息

J Biomed Mater Res A. 2023 Feb;111(2):224-233. doi: 10.1002/jbm.a.37452. Epub 2022 Oct 10.

Abstract

Biomimetic scaffolds composed of bioactive ceramic-based materials incorporated within a polymeric framework have shown immense promise for use in bone tissue engineering (BTE) applications. However, studies on direct comparison of the efficacy of different bioceramics on bone bioactivity and osteogenic differentiation are lacking. Herein, we performed an in vitro direct comparison of three different bioceramics-Bioglass 45S5 (BG), Laponite XLG (LAP), and β-Tricalcium Phosphate (TCP)-on the physical properties and bone bioactivity of methacrylated collagen (CMA) hydrogels (10% w/w bioceramic:CMA). In addition, human MSCs (hMSCs) were encapsulated in bioceramic-laden CMA hydrogels and the effect of different bioceramics on osteogenic differentiation of hMSCs was investigated in two different culture medium-osteoconductive (without dexamethasone [DEX]) and osteoinductive (with DEX). Results showed that the stability of CMA hydrogels was maintained upon bioceramic addition. Compression testing revealed that BG incorporation significantly decreased (p < 0.05) the modulus of photochemically crosslinked CMA hydrogels. Incubation of TCP-CMA and LAP-CMA hydrogels in simulated body fluid showed deposition of hydroxycarbonate apatite layer on the surface indicating that these hydrogels may be more bone bioactive than BG-CMA and CMA only hydrogels. Cell cytoskeleton staining results showed greater cell spreading in TCP-CMA hydrogels. Furthermore, TCP incorporation significantly increased alkaline phosphatase activity (ALP; p < 0.05) in hMSCs. Together, these results indicate that TCP has superior osteogenic potential compared with BG and LAP and hence should be considered as a bioceramic of preferred choice for use in the biomimetic design of cell-laden hydrogels for BTE applications.

摘要

由生物活性陶瓷基材料组成的仿生支架,嵌入聚合物框架中,在骨组织工程(BTE)应用中显示出巨大的应用潜力。然而,缺乏对不同生物陶瓷在骨生物活性和成骨分化方面的功效进行直接比较的研究。在此,我们对三种不同生物陶瓷(45S5 生物玻璃(BG)、Laponite XLG(LAP)和β-磷酸三钙(TCP))在甲基丙烯酰化胶原(CMA)水凝胶(10%w/w 生物陶瓷:CMA)的物理性能和骨生物活性方面进行了体外直接比较。此外,将人骨髓间充质干细胞(hMSCs)包封在负载生物陶瓷的 CMA 水凝胶中,并在两种不同的培养基(无地塞米松[DEX]的骨诱导培养基和含 DEX 的成骨培养基)中研究了不同生物陶瓷对 hMSCs 成骨分化的影响。结果表明,添加生物陶瓷后 CMA 水凝胶的稳定性得以维持。压缩试验表明,BG 的掺入显著降低了光交联 CMA 水凝胶的模量(p<0.05)。TCP-CMA 和 LAP-CMA 水凝胶在模拟体液中的孵育显示在表面沉积了羟磷灰石层,表明这些水凝胶可能比 BG-CMA 和仅 CMA 水凝胶具有更高的骨生物活性。细胞骨架染色结果表明,TCP-CMA 水凝胶中的细胞铺展更大。此外,TCP 的掺入显著增加了 hMSCs 中的碱性磷酸酶活性(ALP;p<0.05)。综上所述,这些结果表明 TCP 具有比 BG 和 LAP 更高的成骨潜力,因此应被视为用于仿生设计细胞负载水凝胶的首选生物陶瓷,以用于 BTE 应用。

相似文献

1
A comparative study of bone bioactivity and osteogenic potential of different bioceramics in methacrylated collagen hydrogels.
J Biomed Mater Res A. 2023 Feb;111(2):224-233. doi: 10.1002/jbm.a.37452. Epub 2022 Oct 10.
2
Bioglass incorporated methacrylated collagen bioactive ink for 3D printing of bone tissue.
Biomed Mater. 2021 Feb 26;16(3). doi: 10.1088/1748-605X/abc744.
3
Dual crosslinking strategy to generate mechanically viable cell-laden printable constructs using methacrylated collagen bioinks.
Mater Sci Eng C Mater Biol Appl. 2020 Feb;107:110290. doi: 10.1016/j.msec.2019.110290. Epub 2019 Oct 9.
4
Photochemically crosslinked cell-laden methacrylated collagen hydrogels with high cell viability and functionality.
J Biomed Mater Res A. 2019 Jul;107(7):1541-1550. doi: 10.1002/jbm.a.36668. Epub 2019 Apr 7.
6
Synergistic interplay between human MSCs and HUVECs in 3D spheroids laden in collagen/fibrin hydrogels for bone tissue engineering.
Acta Biomater. 2019 Sep 1;95:348-356. doi: 10.1016/j.actbio.2019.02.046. Epub 2019 Mar 1.
7
8
Autonomous osteogenic differentiation of hASCs encapsulated in methacrylated gellan-gum hydrogels.
Acta Biomater. 2016 Sep 1;41:119-32. doi: 10.1016/j.actbio.2016.05.033. Epub 2016 May 24.
9
Species-Based Differences in Mechanical Properties, Cytocompatibility, and Printability of Methacrylated Collagen Hydrogels.
Biomacromolecules. 2022 Dec 12;23(12):5137-5147. doi: 10.1021/acs.biomac.2c00985. Epub 2022 Nov 23.
10
Enhancing the bioactivity of hydroxyapatite bioceramic via encapsulating with silica-based bioactive glass sol.
J Mech Behav Biomed Mater. 2022 Apr;128:105104. doi: 10.1016/j.jmbbm.2022.105104. Epub 2022 Jan 30.

引用本文的文献

本文引用的文献

2
Effects of fibrous collagen/CDHA/hUCS biocomposites on bone tissue regeneration.
Int J Biol Macromol. 2021 Apr 15;176:479-489. doi: 10.1016/j.ijbiomac.2021.02.050. Epub 2021 Feb 8.
3
Hierarchical Incorporation of Surface-Functionalized Laponite Clay Nanoplatelets with Type I Collagen Matrix.
Biomacromolecules. 2021 Feb 8;22(2):504-513. doi: 10.1021/acs.biomac.0c01391. Epub 2020 Dec 4.
4
Bioglass incorporated methacrylated collagen bioactive ink for 3D printing of bone tissue.
Biomed Mater. 2021 Feb 26;16(3). doi: 10.1088/1748-605X/abc744.
5
Tunable bioactivity and mechanics of collagen-based tissue engineering constructs: A comparison of EDC-NHS, genipin and TG2 crosslinkers.
Biomaterials. 2020 Sep;254:120109. doi: 10.1016/j.biomaterials.2020.120109. Epub 2020 May 22.
6
Correlations between macrophage polarization and osteoinduction of porous calcium phosphate ceramics.
Acta Biomater. 2020 Feb;103:318-332. doi: 10.1016/j.actbio.2019.12.019. Epub 2019 Dec 17.
7
In vitro measurement of the chemical changes occurring within β-tricalcium phosphate bone graft substitutes.
Acta Biomater. 2020 Jan 15;102:440-457. doi: 10.1016/j.actbio.2019.11.035. Epub 2019 Nov 20.
8
Review of bone graft and bone substitutes with an emphasis on fracture surgeries.
Biomater Res. 2019 Mar 14;23:9. doi: 10.1186/s40824-019-0157-y. eCollection 2019.
9
Effects of collagen/β-tricalcium phosphate bone graft to regenerate bone in critically sized rabbit calvarial defects.
J Appl Biomater Funct Mater. 2019 Jan-Mar;17(1):2280800018820490. doi: 10.1177/2280800018820490.
10
Simulated body fluid and the novel bioactive materials derived from it.
J Biomed Mater Res A. 2019 May;107(5):968-977. doi: 10.1002/jbm.a.36620. Epub 2019 Feb 13.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验