Suppr超能文献

声力量谱学揭示了碳水化合物结合模块在纤维素解结合行为上的细微差异。

Acoustic force spectroscopy reveals subtle differences in cellulose unbinding behavior of carbohydrate-binding modules.

机构信息

Department of Chemical and Biochemical Engineering, Rutgers, The State University of New Jersey, Piscataway, NJ 08854.

Department of Chemistry and Chemical Biology, Rutgers, The State University of New Jersey, Piscataway, NJ 08854.

出版信息

Proc Natl Acad Sci U S A. 2022 Oct 18;119(42):e2117467119. doi: 10.1073/pnas.2117467119. Epub 2022 Oct 10.

Abstract

Protein adsorption to solid carbohydrate interfaces is critical to many biological processes, particularly in biomass deconstruction. To engineer more-efficient enzymes for biomass deconstruction into sugars, it is necessary to characterize the complex protein-carbohydrate interfacial interactions. A carbohydrate-binding module (CBM) is often associated with microbial surface-tethered cellulosomes or secreted cellulase enzymes to enhance substrate accessibility. However, it is not well known how CBMs recognize, bind, and dissociate from polysaccharides to facilitate efficient cellulolytic activity, due to the lack of mechanistic understanding and a suitable toolkit to study CBM-substrate interactions. Our work outlines a general approach to study the unbinding behavior of CBMs from polysaccharide surfaces using a highly multiplexed single-molecule force spectroscopy assay. Here, we apply acoustic force spectroscopy (AFS) to probe a cellulosomal scaffoldin protein (CBM3a) and measure its dissociation from nanocellulose surfaces at physiologically relevant, low force loading rates. An automated microfluidic setup and method for uniform deposition of insoluble polysaccharides on the AFS chip surfaces are demonstrated. The rupture forces of wild-type CBM3a, and its Y67A mutant, unbinding from nanocellulose surfaces suggests distinct multimodal CBM binding conformations, with structural mechanisms further explored using molecular dynamics simulations. Applying classical dynamic force spectroscopy theory, the single-molecule unbinding rate at zero force is extrapolated and found to agree with bulk equilibrium unbinding rates estimated independently using quartz crystal microbalance with dissipation monitoring. However, our results also highlight critical limitations of applying classical theory to explain the highly multivalent binding interactions for cellulose-CBM bond rupture forces exceeding 15 pN.

摘要

蛋白质在固体碳水化合物界面上的吸附对许多生物过程至关重要,特别是在生物质解构中。为了设计更高效的酶来将生物质解构成糖,有必要对复杂的蛋白质-碳水化合物界面相互作用进行表征。碳水化合物结合模块(CBM)通常与微生物表面固定的纤维小体或分泌的纤维素酶相关联,以增强底物的可及性。然而,由于缺乏对机制的理解和研究 CBM-底物相互作用的合适工具,因此尚不清楚 CBM 如何识别、结合和从多糖体上解离,以促进有效的纤维素酶活性。

我们的工作概述了一种使用高度多重化单分子力谱分析测定法研究 CBM 从多糖体表面解吸的通用方法。在这里,我们应用声力学谱(AFS)来探测纤维小体支架蛋白(CBM3a),并在生理相关的低力加载率下测量其从纳米纤维素表面的解离。展示了一种自动微流控装置和在 AFS 芯片表面上均匀沉积不溶性多糖的方法。野生型 CBM3a 和其 Y67A 突变体从纳米纤维素表面解吸的断裂力表明存在不同的多模态 CBM 结合构象,使用分子动力学模拟进一步探索了结构机制。应用经典动态力谱理论,在零力下推断出单分子解吸速率,并发现其与使用石英晶体微天平耗散监测法独立估计的体相平衡解吸速率一致。然而,我们的结果还突出了应用经典理论来解释纤维素-CBM 键断裂力超过 15 pN 的高度多价结合相互作用的关键局限性。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/8bf1/9586272/a603e59e5a2e/pnas.2117467119fig01.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验