Suppr超能文献

PCformer:一种基于肝癌组织病理学图像的 MVI 边界分类的 MVI 识别方法。

PCformer: an MVI recognition method via classification of the MVI boundary according to histopathological images of liver cancer.

出版信息

J Opt Soc Am A Opt Image Sci Vis. 2022 Sep 1;39(9):1673-1681. doi: 10.1364/JOSAA.463439.

Abstract

Liver cancer is one of the most common cancers leading to death in the world. Microvascular invasion (MVI) is a principal reason for the poor long-term survival rate after liver cancer surgery. Early detection and treatment are very important for improving the survival rate. Manual examination of MVI based on histopathological images is very inefficient and time consuming. MVI automatic diagnosis based on deep learning methods can effectively deal with this problem, reduce examination time, and improve detection efficiency. In recent years, deep learning-based methods have been widely used in histopathological image analysis because of their impressive performance. However, it is very challenging to identify MVI directly using deep learning methods, especially under the interference of hepatocellular carcinoma (HCC) because there is no obvious difference in the histopathological level between HCC and MVI. To cope with this problem, we adopt a method of classifying the MVI boundary to avoid interference from HCC. Nonetheless, due to the specificity of the histopathological tissue structure with the MVI boundary, the effect of transfer learning using the existing models is not obvious. Therefore, in this paper, according to the features of the MVI boundary histopathological tissue structure, we propose a new classification model, i.e., the PCformer, which combines the convolutional neural network (CNN) method with a visual transformer and improves the recognition performance of the MVI boundary histopathological image. Experimental results show that our method has better performance than other models based on a CNN or a transformer.

摘要

肝癌是导致全球死亡的最常见癌症之一。微血管侵犯(MVI)是肝癌手术后长期生存率低的主要原因。早期发现和治疗对于提高生存率非常重要。基于组织病理学图像的 MVI 手动检查效率非常低且耗时。基于深度学习方法的 MVI 自动诊断可以有效地解决这个问题,减少检查时间,提高检测效率。近年来,基于深度学习的方法由于其出色的性能在组织病理学图像分析中得到了广泛应用。然而,直接使用深度学习方法识别 MVI 非常具有挑战性,特别是在肝细胞癌(HCC)的干扰下,因为 HCC 和 MVI 在组织病理学水平上没有明显区别。为了应对这个问题,我们采用了一种分类 MVI 边界的方法来避免 HCC 的干扰。尽管如此,由于 MVI 边界组织病理学结构的特异性,使用现有模型进行迁移学习的效果并不明显。因此,在本文中,根据 MVI 边界组织病理学结构的特点,我们提出了一种新的分类模型,即 PCformer,它结合了卷积神经网络(CNN)方法和视觉转换器,并提高了 MVI 边界组织病理学图像的识别性能。实验结果表明,我们的方法在基于 CNN 或转换器的其他模型上具有更好的性能。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验