U.S. Dept. of Energy Joint Genome Institute, Berkeley, CA 94720, USA.
Department of Plant and Microbial Biology, University of California, Berkeley, Berkeley, CA 94720, USA.
Genetics. 2023 Feb 9;223(2). doi: 10.1093/genetics/iyac146.
The "genomic shock" hypothesis posits that unusual challenges to genome integrity such as whole genome duplication may induce chaotic genome restructuring. Decades of research on polyploid genomes have revealed that this is often, but not always the case. While some polyploids show major chromosomal rearrangements and derepression of transposable elements in the immediate aftermath of whole genome duplication, others do not. Nonetheless, all polyploids show gradual diploidization over evolutionary time. To evaluate these hypotheses, we produced a chromosome-scale reference genome for the natural allotetraploid grass Brachypodium hybridum, accession "Bhyb26." We compared 2 independently derived accessions of B. hybridum and their deeply diverged diploid progenitor species Brachypodium stacei and Brachypodium distachyon. The 2 B. hybridum lineages provide a natural timecourse in genome evolution because one formed 1.4 million years ago, and the other formed 140 thousand years ago. The genome of the older lineage reveals signs of gradual post-whole genome duplication genome evolution including minor gene loss and genome rearrangement that are missing from the younger lineage. In neither B. hybridum lineage do we find signs of homeologous recombination or pronounced transposable element activation, though we find evidence supporting steady post-whole genome duplication transposable element activity in the older lineage. Gene loss in the older lineage was slightly biased toward 1 subgenome, but genome dominance was not observed at the transcriptomic level. We propose that relaxed selection, rather than an abrupt genomic shock, drives evolutionary novelty in B. hybridum, and that the progenitor species' similarity in transposable element load may account for the subtlety of the observed genome dominance.
“基因组冲击”假说认为,基因组完整性受到全基因组复制等异常挑战,可能会引发混沌的基因组重排。几十年来对多倍体基因组的研究表明,情况并非总是如此。虽然一些多倍体在全基因组复制后立即表现出主要的染色体重排和转座元件的去抑制,但其他多倍体则没有。尽管如此,所有的多倍体在进化过程中都会逐渐二倍体化。为了评估这些假说,我们为天然异源四倍体草 Brachypodium hybridum 产生了一个染色体尺度的参考基因组, accession "Bhyb26"。我们比较了 2 个独立衍生的 B. hybridum 品系及其深度分化的二倍体祖先物种 Brachypodium stacei 和 Brachypodium distachyon。这 2 个 B. hybridum 谱系提供了一个基因组进化的自然时间过程,因为其中一个形成于 140 万年前,另一个形成于 140 万年前。较老谱系的基因组显示出全基因组复制后基因组进化的迹象,包括从较年轻谱系中缺失的轻微基因丢失和基因组重排。在这两个 B. hybridum 谱系中,我们都没有发现同系重组或明显转座元件激活的迹象,尽管我们发现了支持较老谱系中全基因组复制后转座元件活性的证据。较老谱系中的基因丢失略有偏向于 1 个子基因组,但在转录组水平上没有观察到基因组优势。我们提出,放松选择而不是突然的基因组冲击,推动了 B. hybridum 的进化新颖性,而祖先物种转座元件负荷的相似性可能解释了观察到的基因组优势的微妙性。