Suppr超能文献

多模态融合用于 PET-CT 图像中特定模态的肺肿瘤分割。

Cross modality fusion for modality-specific lung tumor segmentation in PET-CT images.

机构信息

School of Electronic and Information Engineering, Soochow University, Suzhou, Jiangsu 215006, People's Republic of China.

First Affiliated Hospital of Soochow University, Suzhou, Jiangsu 215006, People's Republic of China.

出版信息

Phys Med Biol. 2022 Nov 7;67(22). doi: 10.1088/1361-6560/ac994e.

Abstract

Although positron emission tomography-computed tomography (PET-CT) images have been widely used, it is still challenging to accurately segment the lung tumor. The respiration, movement and imaging modality lead to large modality discrepancy of the lung tumors between PET images and CT images. To overcome these difficulties, a novel network is designed to simultaneously obtain the corresponding lung tumors of PET images and CT images. The proposed network can fuse the complementary information and preserve modality-specific features of PET images and CT images. Due to the complementarity between PET images and CT images, the two modality images should be fused for automatic lung tumor segmentation. Therefore, cross modality decoding blocks are designed to extract modality-specific features of PET images and CT images with the constraints of the other modality. The edge consistency loss is also designed to solve the problem of blurred boundaries of PET images and CT images. The proposed method is tested on 126 PET-CT images with non-small cell lung cancer, and Dice similarity coefficient scores of lung tumor segmentation reach 75.66 ± 19.42 in CT images and 79.85 ± 16.76 in PET images, respectively. Extensive comparisons with state-of-the-art lung tumor segmentation methods have also been performed to demonstrate the superiority of the proposed network.

摘要

虽然正电子发射断层扫描计算机断层扫描(PET-CT)图像已经得到广泛应用,但要准确地对肺肿瘤进行分割仍然具有挑战性。呼吸、运动和成像方式导致肺肿瘤在 PET 图像和 CT 图像之间存在很大的模式差异。为了克服这些困难,设计了一种新的网络来同时获取 PET 图像和 CT 图像的相应肺肿瘤。所提出的网络可以融合互补信息,并保留 PET 图像和 CT 图像的模态特定特征。由于 PET 图像和 CT 图像之间的互补性,这两种模态图像应进行融合以实现自动肺肿瘤分割。因此,设计了跨模态解码块来提取具有其他模态约束的 PET 图像和 CT 图像的模态特定特征。还设计了边缘一致性损失来解决 PET 图像和 CT 图像边界模糊的问题。该方法在 126 张非小细胞肺癌的 PET-CT 图像上进行了测试,在 CT 图像中肺肿瘤分割的 Dice 相似系数分数达到 75.66±19.42,在 PET 图像中达到 79.85±16.76。还与最先进的肺肿瘤分割方法进行了广泛比较,以证明所提出的网络的优越性。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验