Harrison Conrad J, Plummer Otho R, Dawson Jill, Jenkinson Crispin, Hunt Audrey, Rodrigues Jeremy N
Methodology Oxford Limited, London, UK.
Universal Research Solutions, Columbia, Missouri, USA.
Bone Jt Open. 2022 Oct;3(10):786-794. doi: 10.1302/2633-1462.310.BJO-2022-0073.R1.
The aim of this study was to develop and evaluate machine-learning-based computerized adaptive tests (CATs) for the Oxford Hip Score (OHS), Oxford Knee Score (OKS), Oxford Shoulder Score (OSS), and the Oxford Elbow Score (OES) and its subscales.
We developed CAT algorithms for the OHS, OKS, OSS, overall OES, and each of the OES subscales, using responses to the full-length questionnaires and a machine-learning technique called regression tree learning. The algorithms were evaluated through a series of simulation studies, in which they aimed to predict respondents' full-length questionnaire scores from only a selection of their item responses. In each case, the total number of items used by the CAT algorithm was recorded and CAT scores were compared to full-length questionnaire scores by mean, SD, score distribution plots, Pearson's correlation coefficient, intraclass correlation (ICC), and the Bland-Altman method. Differences between CAT scores and full-length questionnaire scores were contextualized through comparison to the instruments' minimal clinically important difference (MCID).
The CAT algorithms accurately estimated 12-item questionnaire scores from between four and nine items. Scores followed a very similar distribution between CAT and full-length assessments, with the mean score difference ranging from 0.03 to 0.26 out of 48 points. Pearson's correlation coefficient and ICC were 0.98 for each 12-item scale and 0.95 or higher for the OES subscales. In over 95% of cases, a patient's CAT score was within five points of the full-length questionnaire score for each 12-item questionnaire.
Oxford Hip Score, Oxford Knee Score, Oxford Shoulder Score, and Oxford Elbow Score (including separate subscale scores) CATs all markedly reduce the burden of items to be completed without sacrificing score accuracy.Cite this article: 2022;3(10):786-794.
本研究旨在开发并评估基于机器学习的计算机自适应测试(CAT),用于牛津髋关节评分(OHS)、牛津膝关节评分(OKS)、牛津肩关节评分(OSS)、牛津肘关节评分(OES)及其子量表。
我们利用对完整问卷的回答以及一种名为回归树学习的机器学习技术,为OHS、OKS、OSS、整体OES及其每个子量表开发了CAT算法。通过一系列模拟研究对算法进行评估,在这些研究中,算法旨在仅根据部分项目回答来预测受访者的完整问卷分数。在每种情况下,记录CAT算法使用的项目总数,并通过均值、标准差、分数分布图、皮尔逊相关系数、组内相关系数(ICC)和布兰德 - 奥特曼方法将CAT分数与完整问卷分数进行比较。通过与量表的最小临床重要差异(MCID)进行比较,将CAT分数与完整问卷分数之间的差异进行背景化分析。
CAT算法从4至9个项目中准确估计了12项问卷分数。CAT和完整评估之间的分数分布非常相似,在48分中,平均分数差异在0.03至0.26之间。每个12项量表的皮尔逊相关系数和ICC为0.98,OES子量表的相关系数为0.95或更高。在超过95%的情况下,对于每个12项问卷,患者的CAT分数与完整问卷分数相差不超过5分。
牛津髋关节评分、牛津膝关节评分、牛津肩关节评分和牛津肘关节评分(包括单独的子量表分数)的CAT均显著减轻了需要完成的项目负担,同时不牺牲分数准确性。引用本文:2022;3(10):786 - 794。