Department of Chemical and Biological Engineering, University of Colorado Boulder, Boulder, Colorado80309, United States.
J Phys Chem B. 2022 Oct 27;126(42):8427-8438. doi: 10.1021/acs.jpcb.2c05423. Epub 2022 Oct 12.
Protein tyrosine phosphatases (PTPs) are promising drug targets for treating a wide range of diseases such as diabetes, cancer, and neurological disorders, but their conserved active sites have complicated the design of selective therapeutics. This study examines the allosteric inhibition of PTP1B by amorphadiene (AD), a terpenoid hydrocarbon that is an unusually selective inhibitor. Molecular dynamics (MD) simulations carried out in this study suggest that AD can stably sample multiple neighboring sites on the allosterically influential C-terminus of the catalytic domain. Binding to these sites requires a disordered α7 helix, which stabilizes the PTP1B-AD complex and may contribute to the selectivity of AD for PTP1B over TCPTP. Intriguingly, the binding mode of AD differs from that of the most well-studied allosteric inhibitor of PTP1B. Indeed, biophysical measurements and MD simulations indicate that the two molecules can bind simultaneously. Upon binding, both inhibitors destabilize the α7 helix by disrupting interactions at the α3-α7 interface and prevent the formation of hydrogen bonds that facilitate closure of the catalytically essential WPD loop. These findings indicate that AD is a promising scaffold for building allosteric inhibitors of PTP1B and illustrate, more broadly, how unfunctionalized terpenoids can engage in specific interactions with protein surfaces.
蛋白酪氨酸磷酸酶(PTPs)是治疗多种疾病(如糖尿病、癌症和神经紊乱)的有前途的药物靶点,但它们保守的活性部位使得选择性治疗药物的设计变得复杂。本研究考察了无定形二烯(AD)对 PTP1B 的变构抑制作用,AD 是一种萜类碳氢化合物,是一种异常选择性抑制剂。本研究进行的分子动力学(MD)模拟表明,AD 可以稳定地在催化结构域的变构影响的 C 末端的多个相邻位置上进行采样。与这些位点的结合需要一个无序的 α7 螺旋,它稳定了 PTP1B-AD 复合物,并可能有助于 AD 对 PTP1B 相对于 TCPTP 的选择性。有趣的是,AD 的结合模式与 PTP1B 的研究最充分的变构抑制剂不同。事实上,生物物理测量和 MD 模拟表明,这两种分子可以同时结合。结合后,两种抑制剂通过破坏 α3-α7 界面的相互作用使 α7 螺旋不稳定,并阻止形成有助于催化必需的 WPD 环闭合的氢键。这些发现表明,AD 是构建 PTP1B 变构抑制剂的有前途的支架,并更广泛地说明非官能化萜类如何与蛋白质表面进行特异性相互作用。