Suppr超能文献

基于图神经网络的药物重定位计算方法。

A computational approach to drug repurposing using graph neural networks.

机构信息

Indian Institute of Science, Bangalore, 560012, India.

出版信息

Comput Biol Med. 2022 Nov;150:105992. doi: 10.1016/j.compbiomed.2022.105992. Epub 2022 Aug 31.

Abstract

Drug repurposing is an approach to identify new medical indications of approved drugs. This work presents a graph neural network drug repurposing model, which we refer to as GDRnet, to efficiently screen a large database of approved drugs and predict the possible treatment for novel diseases. We pose drug repurposing as a link prediction problem in a multi-layered heterogeneous network with about 1.4 million edges capturing complex interactions between nearly 42,000 nodes representing drugs, diseases, genes, and human anatomies. GDRnet has an encoder-decoder architecture, which is trained in an end-to-end manner to generate scores for drug-disease pairs under test. We demonstrate the efficacy of the proposed model on real datasets as compared to other state-of-the-art baseline methods. For a majority of the diseases, GDRnet ranks the actual treatment drug in the top 15. Furthermore, we apply GDRnet on a coronavirus disease (COVID-19) dataset and show that many drugs from the predicted list are being studied for their efficacy against the disease.

摘要

药物再利用是一种鉴定已批准药物新医疗用途的方法。本研究提出了一种图神经网络药物再利用模型,称为 GDRnet,用于高效筛选大型已批准药物数据库并预测新型疾病的可能治疗方法。我们将药物再利用问题作为一个链接预测问题,在一个具有约 140 万条边的多层异质网络中提出,该网络捕捉了代表药物、疾病、基因和人体解剖结构的近 42000 个节点之间的复杂相互作用。GDRnet 具有编码器-解码器架构,可通过端到端方式进行训练,以生成测试药物-疾病对的分数。与其他最先进的基线方法相比,我们在真实数据集上证明了所提出模型的有效性。对于大多数疾病,GDRnet 将实际治疗药物排在前 15 位。此外,我们将 GDRnet 应用于冠状病毒病 (COVID-19) 数据集,并表明预测列表中的许多药物正在研究其对该疾病的疗效。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验