Suppr超能文献

基于深度残差神经网络的机器人关节故障诊断方法。

Deep residual neural-network-based robot joint fault diagnosis method.

机构信息

Institute of School of Automation, University of Science and Technology Beijing, Beijing, 100083, China.

Institute of School of Mechatronic Engineering and Automation, Foshan University, Foshan, 528231, China.

出版信息

Sci Rep. 2022 Oct 13;12(1):17158. doi: 10.1038/s41598-022-22171-7.

Abstract

A data driven method-based robot joint fault diagnosis method using deep residual neural network (DRNN) is proposed, where Resnet-based fault diagnosis method is introduced. The proposed method mainly deals with kinds of fault types, such as gain error, offset error and malfunction for both sensors and actuators, respectively. First, a deep residual network fault diagnosis model is derived by stacking small convolution cores and increasing the core size. meanwhile, the gaussian white noise is injected into the fault data set to verify the noise immunity for the proposed deep residual network. Furthermore, a simulation is conducted, where different fault diagnosis methods including support vector machine (SVM), artificial neural network (ANN), convolutional neural network (CNN), long-term memory network (LTMN) and deep residual neural network (DRNN) are compared, and the simulation results show the accuracy of fault diagnosis for robot system using DRNN is higher, meanwhile, DRNN needs less model training time. Visualization analysis proved the feasibility and effectiveness of the proposed method for robot joint sensor and actuator fault diagnosis using DRNN method.

摘要

提出了一种基于数据驱动的机器人关节故障诊断方法,该方法使用深度残差神经网络(DRNN),其中引入了基于 Resnet 的故障诊断方法。该方法主要处理各种故障类型,分别针对传感器和执行器的增益误差、偏移误差和故障。首先,通过堆叠小卷积核和增加核大小,推导出一个深度残差网络故障诊断模型。同时,向故障数据集注入高斯白噪声,以验证所提出的深度残差网络的抗噪能力。此外,进行了仿真,比较了包括支持向量机(SVM)、人工神经网络(ANN)、卷积神经网络(CNN)、长短期记忆网络(LTMN)和深度残差神经网络(DRNN)在内的不同故障诊断方法,仿真结果表明,使用 DRNN 的机器人系统故障诊断的准确性更高,同时,DRNN 需要的模型训练时间更少。可视化分析证明了使用 DRNN 方法对机器人关节传感器和执行器故障进行诊断的可行性和有效性。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2594/9561173/f1f5dc177855/41598_2022_22171_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验