Suppr超能文献

一种用于住院患者急性肾损伤风险分层的更简单机器学习模型。

A Simpler Machine Learning Model for Acute Kidney Injury Risk Stratification in Hospitalized Patients.

作者信息

Hu Yirui, Liu Kunpeng, Ho Kevin, Riviello David, Brown Jason, Chang Alex R, Singh Gurmukteshwar, Kirchner H Lester

机构信息

Department of Population Health Sciences, Geisinger Health, Danville, PA 17822, USA.

Department of Computer Science, Portland State University, Portland, OR 97201, USA.

出版信息

J Clin Med. 2022 Sep 26;11(19):5688. doi: 10.3390/jcm11195688.

Abstract

Background: Hospitalization-associated acute kidney injury (AKI), affecting one-in-five inpatients, is associated with increased mortality and major adverse cardiac/kidney endpoints. Early AKI risk stratification may enable closer monitoring and prevention. Given the complexity and resource utilization of existing machine learning models, we aimed to develop a simpler prediction model. Methods: Models were trained and validated to predict risk of AKI using electronic health record (EHR) data available at 24 h of inpatient admission. Input variables included demographics, laboratory values, medications, and comorbidities. Missing values were imputed using multiple imputation by chained equations. Results: 26,410 of 209,300 (12.6%) inpatients developed AKI during admission between 13 July 2012 and 11 July 2018. The area under the receiver operating characteristic curve (AUROC) was 0.86 for Random Forest and 0.85 for LASSO. Based on Youden’s Index, a probability cutoff of >0.15 provided sensitivity and specificity of 0.80 and 0.79, respectively. AKI risk could be successfully predicted in 91% patients who required dialysis. The model predicted AKI an average of 2.3 days before it developed. Conclusions: The proposed simpler machine learning model utilizing data available at 24 h of admission is promising for early AKI risk stratification. It requires external validation and evaluation of effects of risk prediction on clinician behavior and patient outcomes.

摘要

背景

住院相关急性肾损伤(AKI)影响五分之一的住院患者,与死亡率增加及主要不良心脏/肾脏终点事件相关。早期AKI风险分层可实现更密切的监测和预防。鉴于现有机器学习模型的复杂性和资源利用情况,我们旨在开发一种更简单的预测模型。方法:使用住院24小时时可用的电子健康记录(EHR)数据对模型进行训练和验证,以预测AKI风险。输入变量包括人口统计学、实验室检查值、用药情况和合并症。使用链式方程多重填补法估算缺失值。结果:在2012年7月13日至2018年7月11日期间住院的209,300名患者中,有26,410名(12.6%)在住院期间发生了AKI。随机森林模型的受试者工作特征曲线下面积(AUROC)为0.86,套索回归模型为0.85。根据约登指数,概率截断值>0.15时,敏感性和特异性分别为0.80和0.79。在91%需要透析的患者中能够成功预测AKI风险。该模型在AKI发生前平均2.3天预测到。结论:所提出的利用入院24小时时可用数据的更简单机器学习模型在早期AKI风险分层方面很有前景。它需要外部验证以及对风险预测对临床医生行为和患者结局的影响进行评估。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/b370/9573390/e34254930e97/jcm-11-05688-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验