Suppr超能文献

基于 MLR-LSTM 神经网络的多路段交通流预测。

Multi-Section Traffic Flow Prediction Based on MLR-LSTM Neural Network.

机构信息

School of Safety Science and Emergency Management, Wuhan University of Technology, Wuhan 430079, China.

出版信息

Sensors (Basel). 2022 Oct 4;22(19):7517. doi: 10.3390/s22197517.

Abstract

As the aggravation of road congestion leads to frequent traffic crashes, it is necessary to relieve traffic pressure through traffic flow prediction. As well, the traffic flow of the target road section to be predicted is also closely related to the adjacent road sections. Therefore, in this paper, a prediction method based on the combination of multiple linear regression and Long-Short-Term Memory (MLR-LSTM) is proposed, which uses the incomplete traffic flow data in the past period of time of the target prediction section and the continuous and complete traffic flow data in the past period of time of each adjacent section to jointly predict the traffic flow changes of the target section in a short time. The accurate prediction of future traffic flow changes can be solved based on the model supposed when the traffic flow data of the target road section is partially missing in the past period of time. The accuracy of the prediction results is the same as that of the current mainstream prediction results based on continuous and non-missing target link flow data. Meanwhile, there is a small-scale improvement when the data time interval is short enough. In the case of frequent maintenance of cameras in actual traffic sections, the proposed prediction method is more feasible and can be widely used.

摘要

随着道路拥堵的加剧导致交通事故频繁发生,有必要通过交通流量预测来缓解交通压力。同样,目标预测路段的交通流量也与相邻路段密切相关。因此,本文提出了一种基于多元线性回归和长短时记忆网络(MLR-LSTM)相结合的预测方法,该方法利用目标预测路段过去时间段内不完整的交通流量数据和每个相邻路段过去时间段内连续完整的交通流量数据,共同预测目标路段在短时间内的交通流量变化。该模型假设在过去一段时间内目标路段的交通流量数据部分缺失的情况下,可以解决未来交通流量变化的准确预测问题。预测结果的准确性与基于连续和非缺失目标链路流量数据的当前主流预测结果相同。同时,当数据时间间隔足够短时,会有较小的改进。在实际交通路段频繁维护摄像机的情况下,提出的预测方法更具可行性,可以广泛应用。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/bda4/9573202/880d03e29618/sensors-22-07517-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验