Department of Cellular and Molecular Biophysics, Max Planck Institute of Biochemistry, Am Klopferspitz 18, 82152, Martinsried, Germany.
Nat Commun. 2022 Oct 15;13(1):6098. doi: 10.1038/s41467-022-33679-x.
Constructing a minimal machinery for autonomous self-division of synthetic cells is a major goal of bottom-up synthetic biology. One paradigm has been the E. coli divisome, with the MinCDE protein system guiding assembly and positioning of a presumably contractile ring based on FtsZ and its membrane adaptor FtsA. Here, we demonstrate the full in vitro reconstitution of this machinery consisting of five proteins within lipid vesicles, allowing to observe the following sequence of events in real time: 1) Assembly of an isotropic filamentous FtsZ network, 2) its condensation into a ring-like structure, along with pole-to-pole mode selection of Min oscillations resulting in equatorial positioning, and 3) onset of ring constriction, deforming the vesicles from spherical shape. Besides demonstrating these essential features, we highlight the importance of decisive experimental factors, such as macromolecular crowding. Our results provide an exceptional showcase of the emergence of cell division in a minimal system, and may represent a step towards developing a synthetic cell.
构建一个最小的自主分裂的合成细胞的机器是自下而上的合成生物学的主要目标。一个范例是大肠杆菌的分裂体,MinCDE 蛋白系统指导基于 FtsZ 和其膜接头 FtsA 的假设可收缩环的组装和定位。在这里,我们证明了由五个蛋白质在脂质体中的完整体外重构,允许实时观察以下事件的顺序:1)装配各向同性丝状 FtsZ 网络,2)其凝聚成环结构,同时 Min 振荡的极到极模式选择导致赤道定位,以及 3)环收缩的开始,使囊泡从球形变形。除了证明这些基本特征外,我们还强调了决定性实验因素的重要性,如大分子拥挤。我们的结果提供了一个最小系统中细胞分裂出现的杰出范例,并可能代表朝着开发合成细胞迈出的一步。