Chen Haidi, Haumann F Alexander, Talley Lynne D, Johnson Kenneth S, Sarmiento Jorge L
Atmospheric and Oceanic Sciences Program Princeton University Princeton NJ USA.
Scripps Institution of Oceanography University of California, San Diego La Jolla California USA.
Global Biogeochem Cycles. 2022 Jul;36(7):e2021GB007156. doi: 10.1029/2021GB007156. Epub 2022 Jul 21.
The deep ocean releases large amounts of old, pre-industrial carbon dioxide (CO) to the atmosphere through upwelling in the Southern Ocean, which counters the marine carbon uptake occurring elsewhere. This Southern Ocean CO release is relevant to the global climate because its changes could alter atmospheric CO levels on long time scales, and also affects the present-day potential of the Southern Ocean to take up anthropogenic CO. Here, year-round profiling float measurements show that this CO release arises from a zonal band of upwelling waters between the Subantarctic Front and wintertime sea-ice edge. This band of high CO subsurface water coincides with the outcropping of the 27.8 kg m isoneutral density surface that characterizes Indo-Pacific Deep Water (IPDW). It has a potential partial pressure of CO exceeding current atmospheric CO levels (∆PCO) by 175 ± 32 μatm. Ship-based measurements reveal that IPDW exhibits a distinct ∆PCO maximum in the ocean, which is set by remineralization of organic carbon and originates from the northern Pacific and Indian Ocean basins. Below this IPDW layer, the carbon content increases downwards, whereas ∆PCO decreases. Most of this vertical ∆PCO decline results from decreasing temperatures and increasing alkalinity due to an increased fraction of calcium carbonate dissolution. These two factors limit the CO outgassing from the high-carbon content deep waters on more southerly surface outcrops. Our results imply that the response of Southern Ocean CO fluxes to possible future changes in upwelling are sensitive to the subsurface carbon chemistry set by the vertical remineralization and dissolution profiles.
南大洋通过上升流将大量古老的、工业化前的二氧化碳释放到大气中,这抵消了其他地方海洋的碳吸收。南大洋的这种二氧化碳释放与全球气候相关,因为其变化可能在长时间尺度上改变大气中的二氧化碳水平,还会影响南大洋目前吸收人为二氧化碳的潜力。在这里,全年剖面浮标测量表明,这种二氧化碳释放源于亚南极锋和冬季海冰边缘之间的上升流水带。这条高二氧化碳含量的次表层水带与表征印度洋 - 太平洋深水(IPDW)的27.8千克/立方米等中性密度面的露头相吻合。其二氧化碳的潜在分压超过当前大气中的二氧化碳水平(∆PCO)175±32微大气压。基于船舶的测量显示,IPDW在海洋中呈现出明显的∆PCO最大值,这是由有机碳的再矿化设定的,且起源于北太平洋和印度洋盆地。在这个IPDW层之下,碳含量向下增加,而∆PCO则下降。这种垂直∆PCO下降的大部分是由于碳酸钙溶解比例增加导致温度降低和碱度增加。这两个因素限制了来自高碳含量深水在更偏南表面露头处的二氧化碳脱气。我们的结果表明,南大洋二氧化碳通量对未来上升流可能变化的响应,对由垂直再矿化和溶解剖面设定的次表层碳化学敏感。