White Jonathan S, Karube Kosuke, Ukleev Victor, Derlet P M, Cubitt R, Dewhurst C D, Wildes A R, Yu X Z, Rønnow H M, Tokura Yoshinori, Taguchi Yasujiro
Laboratory for Neutron Scattering and Imaging, Paul Scherrer Institute, Villigen, CH-5232, Switzerland.
Center for Emergent Matter Science (CEMS), RIKEN, Wako, 351-0198, Japan.
J Appl Crystallogr. 2022 Sep 14;55(Pt 5):1219-1231. doi: 10.1107/S1600576722007403. eCollection 2022 Oct 1.
Co-Zn-Mn chiral cubic magnets display versatile magnetic skyrmion phases, including equilibrium phases stable far above and far below room temperature, and the facile creation of robust far-from-equilibrium skyrmion states. In this system, compositional disorder and magnetic frustration are key ingredients that have profound effects on the chiral magnetism. Reported here are studies of the magnetism in CoZnMn by magnetometry, small-angle neutron scattering (SANS), magnetic diffuse neutron scattering and Lorentz transmission electron microscopy (LTEM). While features in magnetometry and LTEM often give standard indications for skyrmion formation, they are not readily observed from the measurements on this system. Instead, skyrmion lattice correlations are only revealed by SANS, and they are found to form an orientationally disordered structure in a minority fraction of the sample. The majority fraction of the sample always displays orientationally disordered helical spin correlations, which undergo further disordering along the radial direction on cooling below the critical temperature ( ≃ 102 K). The near-complete suppression of the skyrmion phase, and the process of disordering on cooling, are attributed to competing magnetic interactions that dominate over the ferromagnetic interaction expected to favour chiral magnetism in this system. These competing interactions start to develop above and become further enhanced towards low temperatures. The present observations of co-existing and disordered magnetic correlations over multiple length scales are not unique to CoZnMn but are seemingly common to the family of Co-Zn-Mn compounds with finite Mn, and their accurate description presents a challenge for theoretical modelling. In addition, this study highlights a need for neutron instrumentation capable of the comprehensive measurement of magnetic correlations over expanded ranges of momentum transfer in such multiple-length-scale magnets.
钴锌锰手性立方磁体展现出多种磁斯格明子相,包括在远高于和远低于室温时稳定的平衡相,以及易于产生的强健的远离平衡的斯格明子态。在这个体系中,成分无序和磁阻挫是对手性磁性有深远影响的关键因素。本文报道了通过磁力测量、小角中子散射(SANS)、磁漫散射中子散射和洛伦兹透射电子显微镜(LTEM)对CoZnMn磁性的研究。虽然磁力测量和LTEM中的特征常常给出斯格明子形成的标准迹象,但在该体系的测量中却不易观察到。相反,斯格明子晶格相关性仅通过SANS揭示,并且发现它们在样品的一小部分中形成取向无序的结构。样品的大部分总是显示取向无序的螺旋自旋相关性,在冷却到临界温度(≃102 K)以下时,这些相关性沿径向进一步无序化。斯格明子相的近乎完全抑制以及冷却时的无序化过程,归因于竞争磁相互作用,这种相互作用在该体系中占主导地位,超过了预期有利于手性磁性的铁磁相互作用。这些竞争相互作用在高于 时开始发展,并在低温下进一步增强。目前在多个长度尺度上共存且无序的磁相关性的观测结果并非CoZnMn所独有,而是在含有限量Mn的Co-Zn-Mn化合物家族中似乎很常见,对它们的准确描述对理论建模提出了挑战。此外,这项研究强调了需要能够在这种多长度尺度磁体中在扩展的动量转移范围内全面测量磁相关性的中子仪器。