Department of Anatomy and Embryology, Leiden University Medical Center, Leiden, The Netherlands.
Department of Applied Stem Cell Technologies, University of Twente, Enschede, The Netherlands.
Curr Protoc. 2022 Oct;2(10):e564. doi: 10.1002/cpz1.564.
Blood vessels are composed of endothelial cells (ECs) that form the inner vessel wall and mural cells that cover the ECs to mediate their stabilization. Crosstalk between ECs and VSMCs while the ECs undergo microfluidic flow is vital for the function and integrity of blood vessels. Here, we describe a protocol to generate three-dimensional (3D) engineered vessels-on-chip (VoCs) composed of vascular cells derived from human induced pluripotent stem cells (hiPSCs). We first describe protocols for robust differentiation of vascular smooth muscle cells (hiPSC-VSMCs) from hiPSCs that are effective across multiple hiPSC lines. Second, we describe the fabrication of a simple microfluidic device consisting of a single collagen lumen that can act as a cell scaffold and support fluid flow using the viscous finger patterning (VFP) technique. After the channel is seeded sequentially with hiPSC-derived ECs (hiPSC-ECs) and hiPSC-VSMCs, a stable EC barrier covered by VSMCs lines the collagen lumen. We demonstrate that this 3D VoC model can recapitulate physiological cell-cell interaction and can be perfused under physiological shear stress using a microfluidic pump. The uniform geometry of the vessel lumens allows precise control of flow dynamics. We have thus developed a robust protocol to generate an entirely isogenic hiPSC-derived 3D VoC model, which could be valuable for studying vessel barrier function and physiology in healthy or disease states. © 2022 The Authors. Current Protocols published by Wiley Periodicals LLC. Basic Protocol 1: Differentiation of hiPSC-VSMCs Support Protocol 1: Characterization of hiPSC-NCCs and hiPSC-VSMCs Support Protocol 2: Preparation of cryopreserved hiPSC-VSMCs and hiPSC-ECs for VoC culture Basic Protocol 2: Generation of 3D VoC model composed of hiPSC-ECs and hiPSC-VSMCs Support Protocol 3: Structural characterization of 3D VoC model.
血管由形成血管内皮层的内皮细胞 (ECs) 和覆盖 ECs 以稳定其功能的壁细胞 (mural cells) 组成。ECs 经历微流时与血管平滑肌细胞 (VSMCs) 的串扰对于血管的功能和完整性至关重要。在这里,我们描述了一种从人诱导多能干细胞 (hiPSC) 中生成由血管细胞组成的三维 (3D) 工程化血管芯片 (VoC) 的方案。我们首先描述了从 hiPSC 中有效分化血管平滑肌细胞 (hiPSC-VSMCs) 的稳健方案,该方案适用于多种 hiPSC 系。其次,我们描述了制造简单的微流控装置的方案,该装置由单个胶原管腔组成,可作为细胞支架,并使用粘性指状图案化 (VFP) 技术支持流体流动。通道被顺序接种 hiPSC 衍生的 ECs (hiPSC-ECs) 和 hiPSC-VSMCs 后,由 VSMCs 覆盖的稳定 EC 屏障排列在胶原管腔中。我们证明,这种 3D VoC 模型可以再现生理细胞-细胞相互作用,并可以使用微流控泵在生理剪切应力下进行灌注。血管腔的均匀几何形状允许精确控制流动动力学。因此,我们开发了一种稳健的方案来生成完全同种异基因 hiPSC 衍生的 3D VoC 模型,该模型对于研究健康或疾病状态下的血管屏障功能和生理学可能很有价值。© 2022 作者。Wiley Periodicals LLC 出版的《当代协议》。基本方案 1:hiPSC-VSMCs 的分化支持方案 1:hiPSC-NCCs 和 hiPSC-VSMCs 的特征支持方案 2:用于 VoC 培养的冷冻保存 hiPSC-VSMCs 和 hiPSC-ECs 的制备基本方案 2:由 hiPSC-ECs 和 hiPSC-VSMCs 组成的 3D VoC 模型的生成支持方案 3:3D VoC 模型的结构特征。