Buck Ryan, Ortega-Del Vecchyo Diego, Gehring Catherine, Michelson Rhett, Flores-Rentería Dulce, Klein Barbara, Whipple Amy V, Flores-Rentería Lluvia
Department of Biology, San Diego State University, San Diego, CA, 92182, USA.
Laboratorio Internacional de Investigación sobre el Genoma Humano, Universidad Nacional Autónoma de México, Santiago de Querétaro, Querétaro, 76230, Mexico.
New Phytol. 2023 Mar;237(6):2435-2449. doi: 10.1111/nph.18543. Epub 2022 Nov 19.
Multispecies interbreeding networks, or syngameons, have been increasingly reported in natural systems. However, the formation, structure, and maintenance of syngameons have received little attention. Through gene flow, syngameons can increase genetic diversity, facilitate the colonization of new environments, and contribute to hybrid speciation. In this study, we evaluated the history, patterns, and consequences of hybridization in a pinyon pine syngameon using morphological and genomic data to assess genetic structure, demographic history, and geographic and climatic data to determine niche differentiation. We demonstrated that Pinus edulis, a dominant species in the Southwestern US and a barometer of climate change, is a core participant in the syngameon, involved in the formation of two drought-adapted hybrid lineages including the parapatric and taxonomically controversial fallax-type. We found that species remain morphologically and genetically distinct at range cores, maintaining species boundaries while undergoing extensive gene flow in areas of sympatry at range peripheries. Our study shows that sequential hybridization may have caused relatively rapid speciation and facilitated the colonization of different niches, resulting in the rapid formation of two new lineages. Participation in the syngameon may allow adaptive traits to be introgressed across species barriers and provide the changes needed to survive future climate scenarios.
多物种杂交网络,即协同基因群,在自然系统中越来越多地被报道。然而,协同基因群的形成、结构和维持却很少受到关注。通过基因流动,协同基因群可以增加遗传多样性,促进新环境的定殖,并有助于杂交物种形成。在本研究中,我们利用形态学和基因组数据评估遗传结构、种群历史,以及地理和气候数据来确定生态位分化,从而评估了一个矮松协同基因群中杂交的历史、模式和后果。我们证明,美国西南部的优势物种、气候变化的晴雨表——矮松,是协同基因群的核心参与者,参与了两个适应干旱的杂交谱系的形成,包括分布区不连续且在分类学上存在争议的类法拉克斯型。我们发现,物种在分布区核心在形态和遗传上保持明显差异,在保持物种界限的同时,在分布区边缘的同域分布区域经历广泛的基因流动。我们的研究表明,连续杂交可能导致了相对快速的物种形成,并促进了不同生态位的定殖,从而导致两个新谱系的快速形成。参与协同基因群可能使适应性性状跨越物种屏障渗入,并提供在未来气候情景下生存所需的变化。