Suppr超能文献

基于均方误差的U结构和卷积块注意力模块提取多尺度显著特征用于睡眠分期

Extracting Multi-Scale and Salient Features by MSE Based U-Structure and CBAM for Sleep Staging.

作者信息

Liu Zhi, Luo Sixin, Lu Yunhua, Zhang Yihao, Jiang Linfeng, Xiao Hanguang

出版信息

IEEE Trans Neural Syst Rehabil Eng. 2023;31:31-38. doi: 10.1109/TNSRE.2022.3216111. Epub 2023 Jan 30.

Abstract

According to the World Health Organization, more and more people in the world are suffering from somnipathy. Automatic sleep staging is critical for assessing sleep quality and assisting in the diagnosis of psychiatric and neurological disorders caused by somnipathy. Many researchers employ deep learning methods for sleep stage classification and have achieved high performance. However, there are still no effective methods to modeling intrinsic characteristics of salient wave in different sleep stages from physiological signals. And transition rules hidden in signals from one to another sleep stage cannot be identified and captured. In addition, class imbalance problem in dataset is not conducive to building a robust classification model. To solve these problems, we construct a deep neural network combining MSE(Multi-Scale Extraction) based U-structure and CBAM (Convolutional Block Attention Module) to extract the multi-scale salient waves from single-channel EEG signals. The U-structured convolutional network with MSE is utilized to extract multi-scale features from raw EEG signals. After that, the CBAM is used to focus more on salient variation and then learn transition rules between successive sleep stages. Further, a class adaptive weight cross entropy loss function is proposed to solve the class imbalance problem. Experiments in three public datasets show that our model greatly outperform the state-of-the-art results compared with existing methods. The overall accuracy and macro F1-score (Sleep-EDF-39: 90.3%-86.2, Sleep-EDF-153: 89.7%-85.2, SHHS: 86.8%-83.5) on three public datasets suggest that the proposed model is very promising to completely take place of human experts for sleep staging.

摘要

根据世界卫生组织的数据,世界上越来越多的人患有睡眠疾病。自动睡眠分期对于评估睡眠质量以及辅助诊断由睡眠疾病引起的精神和神经疾病至关重要。许多研究人员采用深度学习方法进行睡眠阶段分类,并取得了很高的性能。然而,仍然没有有效的方法从生理信号中对不同睡眠阶段的显著波的内在特征进行建模。而且隐藏在从一个睡眠阶段到另一个睡眠阶段的信号中的转换规则无法被识别和捕捉。此外,数据集中的类别不平衡问题不利于构建强大的分类模型。为了解决这些问题,我们构建了一个结合基于多尺度提取(MSE)的U结构和卷积块注意力模块(CBAM)的深度神经网络,以从单通道脑电图信号中提取多尺度显著波。带有MSE的U结构卷积网络用于从原始脑电图信号中提取多尺度特征。之后,使用CBAM更多地关注显著变化,然后学习连续睡眠阶段之间的转换规则。此外,还提出了一种类别自适应权重交叉熵损失函数来解决类别不平衡问题。在三个公共数据集上的实验表明,与现有方法相比,我们的模型大大优于当前的最优结果。在三个公共数据集上的总体准确率和宏F1分数(Sleep-EDF-39:90.3%-86.2,Sleep-EDF-153:89.7%-85.2,SHHS:86.8%-83.5)表明,所提出的模型非常有希望完全取代人类专家进行睡眠分期。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验