Suppr超能文献

基于众包病例报告的学校 COVID-19 聚集规模和传播率。

COVID-19 cluster size and transmission rates in schools from crowdsourced case reports.

机构信息

Department of Mathematics, Simon Fraser University, Burnaby, Canada.

The Donnelly Centre, University of Toronto, Toronto, Canada.

出版信息

Elife. 2022 Oct 21;11:e76174. doi: 10.7554/eLife.76174.

Abstract

The role of schools in the spread of SARS-CoV-2 is controversial, with some claiming they are an important driver of the pandemic and others arguing that transmission in schools is negligible. School cluster reports that have been collected in various jurisdictions are a source of data about transmission in schools. These reports consist of the name of a school, a date, and the number of students known to be infected. We provide a simple model for the frequency and size of clusters in this data, based on random arrivals of index cases at schools who then infect their classmates with a highly variable rate, fitting the overdispersion evident in the data. We fit our model to reports from four Canadian provinces, providing estimates of mean and dispersion for cluster size, as well as the distribution of the instantaneous transmission parameter , whilst factoring in imperfect ascertainment. According to our model with parameters estimated from the data, in all four provinces (i) more than 65% of non-index cases occur in the 20% largest clusters, and (ii) reducing instantaneous transmission rate and the number of contacts a student has at any given time are effective in reducing the total number of cases, whereas strict bubbling (keeping contacts consistent over time) does not contribute much to reduce cluster sizes. We predict strict bubbling to be more valuable in scenarios with substantially higher transmission rates.

摘要

学校在 SARS-CoV-2 传播中的作用存在争议,一些人认为学校是大流行的重要驱动因素,而另一些人则认为学校的传播可以忽略不计。在不同司法管辖区收集的学校聚集报告是关于学校传播的数据来源。这些报告包括学校的名称、日期以及已知被感染的学生人数。我们基于指数病例在学校的随机到达,提出了一种简单的模型来描述这种数据中聚集的频率和大小,这些指数病例随后以高度可变的速率感染他们的同学,拟合了数据中明显的过离散度。我们根据来自加拿大四个省份的报告对模型进行了拟合,提供了聚集大小的均值和离散度的估计值,以及瞬时传播参数 的分布,同时考虑了不完全确定的因素。根据我们用数据估计的参数的模型,在所有四个省份中:(i)超过 65%的非指数病例发生在 20%最大的聚集中;(ii)降低瞬时传播率和学生在任何给定时间的接触次数都可以有效减少病例总数,而严格的泡泡隔离(保持接触者在时间上的一致性)对减少聚集规模贡献不大。我们预测,在传播率显著更高的情况下,严格的泡泡隔离将更有价值。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3349/9711516/04abb2c19053/elife-76174-fig1.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验