Department of Emergency Medicine, Stanford University School of Medicine, Stanford, California, USA.
Emergency Medicine Learning Centre, GVK Emergency Management Research Institute, Secunderabad, Telangana, India.
Acad Emerg Med. 2022 Dec;29(12):1447-1452. doi: 10.1111/acem.14612. Epub 2022 Nov 14.
Cluster surveillance, identification, and containment are primary outbreak management techniques; however, adapting these for low- and middle-income countries is an ongoing challenge. We aimed to evaluate the utility of prehospital call center ambulance dispatch (CCAD) data for surveillance by examining the correlation between influenza-like illness (ILI)-related dispatch calls and COVID-19 cases.
We performed a retrospective analysis of state-level CCAD and COVID-19 data recorded between January 1 and April 30, 2020, in Telangana, India. The primary outcome was a time series correlation between ILI calls in CCAD and COVID-19 case counts. Secondarily, we looked for a year-to-year correlation of ILI calls in the same period over 2018, 2019, and 2020.
On average, ILI calls comprised 12.9% (95% CI 11.7%-14.1%) of total daily calls in 2020, compared to 7.8% (95% CI 7.6%-8.0%) in 2018, and 7.7% (95% CI 7.5%-7.7%) in 2019. ILI call counts from 2018, 2019, and 2020 aligned closely until March 19, when 2020 ILI calls increased, representing 16% of all calls by March 23 and 27.5% by April 7. In contrast to the significant correlation observed between 2020 and previous years' January-February calls (2020 and 2019-Durbin-Watson test statistic [DW] = 0.749, p < 0.001; 2020 and 2018-DW = 1.232, p < 0.001), no correlation was observed for March-April calls (2020 and 2019-DW = 2.012, p = 0.476; 2020 and 2018-DW = 1.820, p = 0.208). In March-April 2020, the daily reported COVID-19 cases by time series significantly correlated with the ILI calls (DW = 0.977, p < 0.001). The ILI calls on a specific day significantly correlated with the COVID-19 cases reported 6 days prior and up to 14 days after (cross-correlation > 0.251, the 95% upper confidence limit).
The statistically significant time series correlation between ILI calls and COVID-19 cases suggests prehospital CCAD can be part of early warning systems aiding outbreak cluster surveillance, identification, and containment.
集群监测、识别和控制是疫情管理的主要手段;然而,将这些手段应用于中低收入国家仍然是一个持续的挑战。我们旨在通过检查与流感样疾病(ILI)相关的调度呼叫与 COVID-19 病例之间的相关性,评估院前呼叫中心救护车调度(CCAD)数据在监测中的实用性。
我们对印度特伦甘纳邦 2020 年 1 月 1 日至 4 月 30 日期间的州级 CCAD 和 COVID-19 数据进行了回顾性分析。主要结局是 CCAD 中 ILI 呼叫与 COVID-19 病例数之间的时间序列相关性。其次,我们还观察了 2018 年、2019 年和 2020 年同期 ILI 呼叫的年度相关性。
与 2018 年相比,2020 年 ILI 呼叫平均占总日呼叫的 12.9%(95%置信区间 11.7%-14.1%),而 2018 年为 7.8%(95%置信区间 7.6%-8.0%),2019 年为 7.7%(95%置信区间 7.5%-7.7%)。2018 年、2019 年和 2020 年的 ILI 呼叫计数直到 3 月 19 日才紧密一致,当时 2020 年的 ILI 呼叫增加,到 3 月 23 日占所有呼叫的 16%,到 3 月 27 日占 27.5%。与 2020 年和前几年 1 月至 2 月的呼叫(2020 年与 2019 年-Durbin-Watson 检验统计量[DW] = 0.749,p < 0.001;2020 年与 2018 年-DW = 1.232,p < 0.001)之间存在显著相关性相比,3 月至 4 月的呼叫没有相关性(2020 年与 2019 年-DW = 2.012,p = 0.476;2020 年与 2018 年-DW = 1.820,p = 0.208)。2020 年 3 月至 4 月,时间序列中每日报告的 COVID-19 病例与 ILI 呼叫显著相关(DW = 0.977,p < 0.001)。特定日的 ILI 呼叫与报告的 COVID-19 病例在 6 天前和 14 天内具有显著相关性(互相关> 0.251,95%置信上限)。
ILI 呼叫与 COVID-19 病例之间存在统计学上显著的时间序列相关性表明,院前 CCAD 可作为早期预警系统的一部分,帮助对疫情集群进行监测、识别和控制。