Suppr超能文献

院前呼叫中心救护车派遣数据在 COVID-19 集群监测中的应用:一项回顾性分析。

Utility of prehospital call center ambulance dispatch data for COVID-19 cluster surveillance: A retrospective analysis.

机构信息

Department of Emergency Medicine, Stanford University School of Medicine, Stanford, California, USA.

Emergency Medicine Learning Centre, GVK Emergency Management Research Institute, Secunderabad, Telangana, India.

出版信息

Acad Emerg Med. 2022 Dec;29(12):1447-1452. doi: 10.1111/acem.14612. Epub 2022 Nov 14.

Abstract

INTRODUCTION

Cluster surveillance, identification, and containment are primary outbreak management techniques; however, adapting these for low- and middle-income countries is an ongoing challenge. We aimed to evaluate the utility of prehospital call center ambulance dispatch (CCAD) data for surveillance by examining the correlation between influenza-like illness (ILI)-related dispatch calls and COVID-19 cases.

METHODS

We performed a retrospective analysis of state-level CCAD and COVID-19 data recorded between January 1 and April 30, 2020, in Telangana, India. The primary outcome was a time series correlation between ILI calls in CCAD and COVID-19 case counts. Secondarily, we looked for a year-to-year correlation of ILI calls in the same period over 2018, 2019, and 2020.

RESULTS

On average, ILI calls comprised 12.9% (95% CI 11.7%-14.1%) of total daily calls in 2020, compared to 7.8% (95% CI 7.6%-8.0%) in 2018, and 7.7% (95% CI 7.5%-7.7%) in 2019. ILI call counts from 2018, 2019, and 2020 aligned closely until March 19, when 2020 ILI calls increased, representing 16% of all calls by March 23 and 27.5% by April 7. In contrast to the significant correlation observed between 2020 and previous years' January-February calls (2020 and 2019-Durbin-Watson test statistic [DW] = 0.749, p < 0.001; 2020 and 2018-DW = 1.232, p < 0.001), no correlation was observed for March-April calls (2020 and 2019-DW = 2.012, p = 0.476; 2020 and 2018-DW = 1.820, p = 0.208). In March-April 2020, the daily reported COVID-19 cases by time series significantly correlated with the ILI calls (DW = 0.977, p < 0.001). The ILI calls on a specific day significantly correlated with the COVID-19 cases reported 6 days prior and up to 14 days after (cross-correlation > 0.251, the 95% upper confidence limit).

CONCLUSIONS

The statistically significant time series correlation between ILI calls and COVID-19 cases suggests prehospital CCAD can be part of early warning systems aiding outbreak cluster surveillance, identification, and containment.

摘要

简介

集群监测、识别和控制是疫情管理的主要手段;然而,将这些手段应用于中低收入国家仍然是一个持续的挑战。我们旨在通过检查与流感样疾病(ILI)相关的调度呼叫与 COVID-19 病例之间的相关性,评估院前呼叫中心救护车调度(CCAD)数据在监测中的实用性。

方法

我们对印度特伦甘纳邦 2020 年 1 月 1 日至 4 月 30 日期间的州级 CCAD 和 COVID-19 数据进行了回顾性分析。主要结局是 CCAD 中 ILI 呼叫与 COVID-19 病例数之间的时间序列相关性。其次,我们还观察了 2018 年、2019 年和 2020 年同期 ILI 呼叫的年度相关性。

结果

与 2018 年相比,2020 年 ILI 呼叫平均占总日呼叫的 12.9%(95%置信区间 11.7%-14.1%),而 2018 年为 7.8%(95%置信区间 7.6%-8.0%),2019 年为 7.7%(95%置信区间 7.5%-7.7%)。2018 年、2019 年和 2020 年的 ILI 呼叫计数直到 3 月 19 日才紧密一致,当时 2020 年的 ILI 呼叫增加,到 3 月 23 日占所有呼叫的 16%,到 3 月 27 日占 27.5%。与 2020 年和前几年 1 月至 2 月的呼叫(2020 年与 2019 年-Durbin-Watson 检验统计量[DW] = 0.749,p < 0.001;2020 年与 2018 年-DW = 1.232,p < 0.001)之间存在显著相关性相比,3 月至 4 月的呼叫没有相关性(2020 年与 2019 年-DW = 2.012,p = 0.476;2020 年与 2018 年-DW = 1.820,p = 0.208)。2020 年 3 月至 4 月,时间序列中每日报告的 COVID-19 病例与 ILI 呼叫显著相关(DW = 0.977,p < 0.001)。特定日的 ILI 呼叫与报告的 COVID-19 病例在 6 天前和 14 天内具有显著相关性(互相关> 0.251,95%置信上限)。

结论

ILI 呼叫与 COVID-19 病例之间存在统计学上显著的时间序列相关性表明,院前 CCAD 可作为早期预警系统的一部分,帮助对疫情集群进行监测、识别和控制。

相似文献

1
Utility of prehospital call center ambulance dispatch data for COVID-19 cluster surveillance: A retrospective analysis.
Acad Emerg Med. 2022 Dec;29(12):1447-1452. doi: 10.1111/acem.14612. Epub 2022 Nov 14.
2
Assessment of ambulance dispatch data for surveillance of influenza-like illness in Melbourne, Australia.
Public Health. 2009 Feb;123(2):163-8. doi: 10.1016/j.puhe.2008.10.027. Epub 2009 Jan 13.
7
Harnessing wearable device data to improve state-level real-time surveillance of influenza-like illness in the USA: a population-based study.
Lancet Digit Health. 2020 Feb;2(2):e85-e93. doi: 10.1016/S2589-7500(19)30222-5. Epub 2020 Jan 16.
9
Epidemiology of emergency ambulance service calls related to COVID-19 in Scotland: a national record linkage study.
Scand J Trauma Resusc Emerg Med. 2022 Jan 28;30(1):9. doi: 10.1186/s13049-022-00995-6.
10
Ambulance dispatch calls attributable to influenza A and other common respiratory viruses in the Netherlands (2014-2016).
Influenza Other Respir Viruses. 2020 Jul;14(4):420-428. doi: 10.1111/irv.12731. Epub 2020 May 14.

本文引用的文献

2
Equitable access to COVID-19 vaccines makes a life-saving difference to all countries.
Nat Hum Behav. 2022 Feb;6(2):207-216. doi: 10.1038/s41562-022-01289-8. Epub 2022 Jan 31.
3
Daily surveillance of COVID-19 using the prospective space-time scan statistic in the United States.
Spat Spatiotemporal Epidemiol. 2020 Aug;34:100354. doi: 10.1016/j.sste.2020.100354. Epub 2020 Jun 27.
4
Coronavirus Disease 2019 Case Surveillance - United States, January 22-May 30, 2020.
MMWR Morb Mortal Wkly Rep. 2020 Jun 19;69(24):759-765. doi: 10.15585/mmwr.mm6924e2.
5
The Equitable Distribution of COVID-19 Therapeutics and Vaccines.
JAMA. 2020 Jun 23;323(24):2462-2463. doi: 10.1001/jama.2020.6641.
7
Feasibility of controlling COVID-19 outbreaks by isolation of cases and contacts.
Lancet Glob Health. 2020 Apr;8(4):e488-e496. doi: 10.1016/S2214-109X(20)30074-7. Epub 2020 Feb 28.
8
Clinical features of patients infected with 2019 novel coronavirus in Wuhan, China.
Lancet. 2020 Feb 15;395(10223):497-506. doi: 10.1016/S0140-6736(20)30183-5. Epub 2020 Jan 24.
9
Use of Ambulance Dispatch Calls for Surveillance of Severe Acute Respiratory Infections.
Emerg Infect Dis. 2020 Jan;26(1):148-150. doi: 10.3201/eid2601.181520.
10
Assessment of ambulance dispatch data for surveillance of influenza-like illness in Melbourne, Australia.
Public Health. 2009 Feb;123(2):163-8. doi: 10.1016/j.puhe.2008.10.027. Epub 2009 Jan 13.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验