Suppr超能文献

从太空看问题很有意义:新的地球观测变量准确地绘制了喜马拉雅山脉的物种分布。

Seeing from space makes sense: Novel earth observation variables accurately map species distributions over Himalaya.

机构信息

Remote Sensing Laboratory, Institute of Environment and Sustainable Development, Banaras Hindu University, Varanasi, 221005, India.

Remote Sensing Laboratory, Institute of Environment and Sustainable Development, Banaras Hindu University, Varanasi, 221005, India; Center for Quantitative Economics and Data Science, Birla Institute of Technology, Mesra, Ranchi, Jharkhand, 835215, India.

出版信息

J Environ Manage. 2023 Jan 1;325(Pt A):116428. doi: 10.1016/j.jenvman.2022.116428. Epub 2022 Oct 19.

Abstract

Topical advances in earth observation have enabled spatially explicit mapping of species' fundamental niche limits that can be used for nature conservation and management applications. This study investigates the possibility of applying functional variables of ecosystem retrieved from Moderate Resolution Imaging Spectroradiometer (MODIS) onboard sensor data to map the species distribution of two alpine treeline species, namely Betula utilis D.Don and Rhododendron campanulatum D.Don over the Himalayan biodiversity hotspot. In this study, we have developed forty-nine Novel Earth Observation Variables (NEOVs) from MODIS products, an asset to the present investigation. To determine the effectiveness and ecological significance of NEOVs combinations, we built and compared four different models, namely, a bioclimatic model (BCM) with bioclimatic predictor variables, a phenology model (PhenoM) with earth observation derived phenological predictor variables, a biophysical model (BiophyM) with earth observation derived biophysical predictor variables, and a hybrid model (HM) with a combination of selected predictor variables from BCM, PhenoM, and BiophyM. All models utilized topographical variables by default. Models that include NEOVs were competitive for focal species, and models without NEOVs had considerably poor model performance and explanatory strength. To ascertain the accurate predictions, we assessed the congruence of predictions by pairwise comparisons of their performance. Among the three machine learning algorithms tested (artificial neural networks, generalised boosting model, and maximum entropy), maximum entropy produced the most promising predictions for BCM, PhenoM, BiophyM, and HM. Area under curve (AUC) and true skill statistic (TSS) scores for the BCM, PhenoM, BiophyM, and HM models derived from maximum entropy were AUC ≥0.9 and TSS ≥0.6 for the focal species. The overall investigation revealed the competency of NEOVs in the accurate prediction of species' fundamental niches, but conventional bioclimatic variables were unable to achieve such a level of precision. A principal component analysis of environmental spaces disclosed that niches of focal species substantially overlapped each other. We demonstrate that the use of satellite onboard sensors' biotic and abiotic variables with species occurrence data can provide precision and resolution for species distribution mapping at a scale that is relevant ecologically and at the operational scale of most conservation and management actions.

摘要

对地观测领域的最新进展使得对物种基本生态位极限进行空间明确测绘成为可能,这可用于自然保护和管理应用。本研究调查了从搭载在传感器上的中分辨率成像光谱仪 (MODIS) 获取的生态系统功能变量应用于测绘喜马拉雅生物多样性热点地区两种高山树线物种,即华西桦和杜鹃的物种分布的可能性。在本研究中,我们从 MODIS 产品中开发了 49 个新的地球观测变量 (NEOV),这是本研究的一项资产。为了确定 NEOV 组合的有效性和生态意义,我们构建并比较了四个不同的模型,即具有生物气候预测变量的生物气候模型 (BCM)、具有地球观测衍生的物候预测变量的物候模型 (PhenoM)、具有地球观测衍生的生物物理预测变量的生物物理模型 (BiophyM) 和具有生物气候模型 (BCM)、物候模型 (PhenoM) 和生物物理模型 (BiophyM) 中选择的预测变量组合的混合模型 (HM)。所有模型默认都使用地形变量。包含 NEOV 的模型对焦点物种具有竞争力,而不包含 NEOV 的模型的模型性能和解释力相当差。为了确定准确的预测,我们通过性能的成对比较来评估预测的一致性。在所测试的三种机器学习算法 (人工神经网络、广义提升模型和最大熵) 中,最大熵为 BCM、PhenoM、BiophyM 和 HM 产生了最有希望的预测。最大熵得出的 BCM、PhenoM、BiophyM 和 HM 模型的曲线下面积 (AUC) 和真技能统计 (TSS) 得分对焦点物种的 AUC≥0.9 和 TSS≥0.6。总体研究表明,NEOV 能够准确预测物种的基本生态位,但传统的生物气候变量无法达到如此精确的水平。对环境空间的主成分分析表明,焦点物种的生态位有很大的重叠。我们证明,利用卫星搭载传感器的生物和非生物变量与物种出现数据相结合,可以在与生态相关的规模和大多数保护和管理行动的操作规模上提供物种分布测绘的精度和分辨率。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验