Kuban Martin, Rigamonti Santiago, Scheidgen Markus, Draxl Claudia
Humboldt-Universität zu Berlin, Institut für Physik und IRIS Adlershof, Berlin, 12489, Germany.
Sci Data. 2022 Oct 22;9(1):646. doi: 10.1038/s41597-022-01754-z.
We develop a materials descriptor based on the electronic density-of-states (DOS) and investigate the similarity of materials based on it. As an application example, we study the Computational 2D Materials Database (C2DB) that hosts thousands of two-dimensional materials with their properties calculated by density-functional theory. Combining our descriptor with a clustering algorithm, we identify groups of materials with similar electronic structure. We introduce additional descriptors to characterize these clusters in terms of crystal structures, atomic compositions, and electronic configurations of their members. This allows us to rationalize the found (dis)similarities and to perform an automated exploratory and confirmatory analysis of the C2DB data. From this analysis, we find that the majority of clusters consist of isoelectronic materials sharing crystal symmetry, but we also identify outliers, i.e., materials whose similarity cannot be explained in this way.
我们基于电子态密度(DOS)开发了一种材料描述符,并在此基础上研究材料的相似性。作为一个应用示例,我们研究了计算二维材料数据库(C2DB),该数据库包含数千种二维材料,其性质由密度泛函理论计算得出。将我们的描述符与聚类算法相结合,我们识别出具有相似电子结构的材料组。我们引入了额外的描述符,从其成员的晶体结构、原子组成和电子构型方面来表征这些聚类。这使我们能够合理化所发现的(不)相似性,并对C2DB数据进行自动的探索性和验证性分析。通过该分析,我们发现大多数聚类由共享晶体对称性的等电子材料组成,但我们也识别出了异常值,即其相似性无法以这种方式解释的材料。