Suppr超能文献

基于两样本汇总数据的顺式孟德尔随机化的统计方法。

Statistical methods for cis-Mendelian randomization with two-sample summary-level data.

机构信息

MRC Biostatistics Unit, School of Clinical Medicine, University of Cambridge, Cambridge, UK.

MRC Integrative Epidemiology Unit, Department of Population Health Sciences, Bristol Medical School, University of Bristol, Bristol, UK.

出版信息

Genet Epidemiol. 2023 Feb;47(1):3-25. doi: 10.1002/gepi.22506. Epub 2022 Oct 23.

Abstract

Mendelian randomization (MR) is the use of genetic variants to assess the existence of a causal relationship between a risk factor and an outcome of interest. Here, we focus on two-sample summary-data MR analyses with many correlated variants from a single gene region, particularly on cis-MR studies which use protein expression as a risk factor. Such studies must rely on a small, curated set of variants from the studied region; using all variants in the region requires inverting an ill-conditioned genetic correlation matrix and results in numerically unstable causal effect estimates. We review methods for variable selection and estimation in cis-MR with summary-level data, ranging from stepwise pruning and conditional analysis to principal components analysis, factor analysis, and Bayesian variable selection. In a simulation study, we show that the various methods have comparable performance in analyses with large sample sizes and strong genetic instruments. However, when weak instrument bias is suspected, factor analysis and Bayesian variable selection produce more reliable inferences than simple pruning approaches, which are often used in practice. We conclude by examining two case studies, assessing the effects of low-density lipoprotein-cholesterol and serum testosterone on coronary heart disease risk using variants in the HMGCR and SHBG gene regions, respectively.

摘要

孟德尔随机化(MR)是利用遗传变异来评估风险因素与感兴趣的结果之间是否存在因果关系。在这里,我们重点介绍了两样本汇总数据 MR 分析,其中涉及单个基因区域的许多相关变异,特别是使用蛋白质表达作为风险因素的顺式-MR 研究。这些研究必须依赖于研究区域内经过精心挑选的一小部分变异;使用该区域中的所有变异需要反转条件不良的遗传相关矩阵,并且会导致数值不稳定的因果效应估计。我们回顾了基于汇总数据的顺式-MR 中变量选择和估计的方法,从逐步修剪和条件分析到主成分分析、因子分析和贝叶斯变量选择。在一项模拟研究中,我们表明,各种方法在具有大样本量和强遗传工具的分析中表现相当。然而,当怀疑存在弱工具偏倚时,因子分析和贝叶斯变量选择比实践中常用的简单修剪方法产生更可靠的推断。最后,我们通过检查两个案例研究来结束本文,分别使用 HMGCR 和 SHBG 基因区域中的变异评估了低密度脂蛋白胆固醇和血清睾丸激素对冠心病风险的影响。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/90c7/10092003/ce596706e69b/GEPI-47-3-g002.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验