Norwegian University of Science and Technology. Industrial Ecology Programme, Department of Energy and Process Engineering, Høgskoleringen 1, 7011, Trondheim, Norway.
Norwegian University of Science and Technology. Industrial Ecology Programme, Department of Energy and Process Engineering, Høgskoleringen 1, 7011, Trondheim, Norway.
J Environ Manage. 2023 Jan 1;325(Pt A):116474. doi: 10.1016/j.jenvman.2022.116474. Epub 2022 Oct 21.
Bioenergy expansion is present in most climate change mitigation scenarios. The associated large land use changes have led to concerns on how bioenergy can be sustainably deployed. Promising win-win strategies include the production of perennial bioenergy crops on recently abandoned cropland or on cropland prone to land degradation, as perennial crops typically reduce soil erosion rates. Natural vegetation regrowth is an alternative nature-based solution that can also co-deliver negative emissions and other environmental benefits. In this study, we explore the potential to deploy bioenergy crops in Nordic countries (Norway, Sweden, Finland, and Denmark) on abandoned cropland and on cropland threatened by soil erosion and compare the achievable climate change mitigation benefits with natural regrowth. We found 186 thousand hectares (kha) of abandoned cropland and 995 kha of cropland threatened by soil erosion suitable for bioenergy crop cultivation. The primary bioenergy potential in the region is 151 PJ (PJ) per year, corresponding to 67-110 PJ per year of liquid biofuels depending on biorefinery technology. This has a climate change mitigation potential from -6.0 to -17 megatons of carbon dioxide equivalents (MtCO) per year over the first 20 years (equivalent to 14-40% of annual road transport emissions), with high-end estimates relying on bioenergy coupled to carbon capture and storage (BECCS). On the same area, natural regrowth can deliver negative emissions of -10 MtCO per year. Biofuel production outperforms natural regrowth on 46% of abandoned cropland with currently available biorefinery technologies, 83% with improved energy conversion efficiency, and nearly everywhere with BECCS. For willow windbreaks, improved biorefinery technology or BECCS is necessary to ensure the delivery of larger negative emissions than natural regrowth. Biofuel production is preferable to natural regrowth on 16% of croplands threatened by soil erosion with the current biorefinery technology and on 87% of the land area with BECCS. Without BECCS, liquid biofuels achieve larger climate benefits than natural regrowth only when bioenergy yields are high. Underutilized land and land affected by degradation processes are an opportunity for a gradual and more sustainable bioenergy deployment, and local considerations are needed to identify case-specific solutions that can co-deliver multiple environmental benefits.
生物能源的扩张存在于大多数气候变化缓解情景中。相关的大规模土地利用变化导致人们关注生物能源如何可持续地部署。有前途的双赢策略包括在最近废弃的农田或易受土地退化影响的农田上生产多年生生物能源作物,因为多年生作物通常会降低土壤侵蚀速率。自然植被再生是一种替代的基于自然的解决方案,也可以共同实现负排放和其他环境效益。在这项研究中,我们探讨了在北欧国家(挪威、瑞典、芬兰和丹麦)的废弃农田和受土壤侵蚀威胁的农田上部署生物能源作物的潜力,并将可实现的气候变化缓解效益与自然再生进行了比较。我们发现,有 18.6 万公顷(kha)废弃的农田和 99.5 千公顷受土壤侵蚀威胁的农田适合生物能源作物的种植。该地区的主要生物能源潜力为每年 151PJ(PJ),相当于每年 67-110PJ 的液体生物燃料,具体取决于生物炼制技术。这在最初 20 年内具有 6.0 至 17 兆吨二氧化碳当量(MtCO)的气候变化缓解潜力(相当于每年道路运输排放量的 14-40%),其中高端估算值依赖于与碳捕获和封存相结合的生物能源(BECCS)。在相同的区域,自然再生每年可实现-10MtCO 的负排放。在当前的生物炼制技术下,46%的废弃农田和 83%的改良能源转换效率的农田上,生物燃料生产的表现优于自然再生。对于柳树防风林,需要改进生物炼制技术或 BECCS,以确保实现比自然再生更大的负排放。在当前的生物炼制技术下,有 16%的受土壤侵蚀威胁的农田和 87%的有 BECCS 的农田上,生物燃料生产优于自然再生。如果没有 BECCS,只有在生物能源产量较高的情况下,液体生物燃料才能实现比自然再生更大的气候效益。利用不足的土地和受退化过程影响的土地为逐步实现更可持续的生物能源部署提供了机会,需要考虑当地情况,以确定可共同实现多种环境效益的具体解决方案。