School of Social Sciences and Mannheim Business School, University of Mannheim, Mannheim, Germany.
TÁRKI Social Research Institute, Budapest, Hungary.
Int J Public Health. 2022 Oct 6;67:1604974. doi: 10.3389/ijph.2022.1604974. eCollection 2022.
Real-time data analysis during a pandemic is crucial. This paper aims to introduce a novel interactive tool called Covid-Predictor-Tracker using several sources of COVID-19 data, which allows examining developments over time and across countries. Exemplified here by investigating relative effects of vaccination to non-pharmaceutical interventions on COVID-19 spread. We combine >100 indicators from the Global COVID-19 Trends and Impact Survey, Johns Hopkins University, Our World in Data, European Centre for Disease Prevention and Control, National Centers for Environmental Information, and Eurostat using random forests, hierarchical clustering, and rank correlation to predict COVID-19 cases. Between 2/2020 and 1/2022, we found among the non-pharmaceutical interventions "mask usage" to have strong effects after the percentage of people vaccinated at least once, followed by country-specific measures such as lock-downs. Countries with similar characteristics share ranks of infection predictors. Gender and age distribution, healthcare expenditures and cultural participation interact with restriction measures. Including time-aware machine learning models in COVID-19 infection dashboards allows to disentangle and rank predictors of COVID-19 cases per country to support policy evaluation. Our open-source tool can be updated daily with continuous data streams, and expanded as the pandemic evolves.
大流行期间的实时数据分析至关重要。本文旨在介绍一种名为 Covid-Predictor-Tracker 的新型交互式工具,该工具使用多种 COVID-19 数据源,允许检查随时间和国家的发展。这里通过研究疫苗接种对非药物干预措施对 COVID-19 传播的相对影响来说明。我们结合了来自全球 COVID-19 趋势和影响调查、约翰霍普金斯大学、我们的世界数据、欧洲疾病预防控制中心、国家环境信息中心和欧盟统计局的 100 多个指标,使用随机森林、层次聚类和秩相关来预测 COVID-19 病例。在 2020 年 2 月至 2022 年 1 月期间,我们发现非药物干预措施中的“口罩使用”在至少接种一次疫苗的人群百分比之后具有很强的影响,其次是特定国家的措施,如封锁。具有相似特征的国家具有相似的感染预测指标排名。性别和年龄分布、医疗保健支出和文化参与与限制措施相互作用。在 COVID-19 感染仪表板中包含基于时间的机器学习模型,可以分解和对每个国家的 COVID-19 病例预测因素进行排名,以支持政策评估。我们的开源工具可以每天使用连续数据流进行更新,并随着大流行的发展而扩展。