Suppr超能文献

使用卷积长短期记忆网络在低剂量非门控胸部CT扫描中进行钙评分。

Calcium scoring in low-dose ungated chest CT scans using convolutional long-short term memory networks.

作者信息

Pieszko K, Shanbhag A, Killekar A, Lemley M, Otaki Y, Kriekinge Serge Van, Kavanagh Paul, Miller Robert Jh, Miller Edward J, Bateman Tim, Dey D, Berman D, Slomka P

机构信息

Departments of Imaging and Medicine, Cedars-Sinai Medical Center, Los Angeles, CA, USA.

Department of Cardiac Sciences, University of Calgary, Calgary AB, Canada.

出版信息

Proc SPIE Int Soc Opt Eng. 2022 Feb-Mar;12032. doi: 10.1117/12.2613147. Epub 2022 Apr 4.

Abstract

We aimed to develop a novel deep-learning based method for automatic coronary artery calcium (CAC) quantification in low-dose ungated computed tomography attenuation correction maps (CTAC). In this study, we used convolutional long-short -term memory deep neural network (conv-LSTM) to automatically derive coronary artery calcium score (CAC) from both standard CAC scans and low-dose ungated scans (CT-attenuation correction maps). We trained convLSTM to segment CAC using 9543 scans. A U-Net model was trained as a reference method. Both models were validated in the OrCaCs dataset (n=32) and in the held-out cohort (n=507) without prior coronary interventions who had CTAC standard CAC scan acquired contemporarily. Cohen's kappa coefficients and concordance matrices were used to assess agreement in four CAC score categories (very low: <10, low:10-100; moderate:101-400 and high >400). The median time to derive results on a central processing unit (CPU) was significantly shorter for the conv-LSTM model- 6.18s (inter quartile range [IQR]: 5.99, 6.3) than for UNet (10.1s, IQR: 9.82, 15.9s, p<0.0001). The memory consumption during training was much lower for our model (13.11Gb) in comparison with UNet (22.31 Gb). Conv-LSTM performed comparably to UNet in terms of agreement with expert annotations, but with significantly shorter inference times and lower memory consumption.

摘要

我们旨在开发一种基于深度学习的新方法,用于在低剂量非门控计算机断层扫描衰减校正图(CTAC)中自动进行冠状动脉钙化(CAC)定量分析。在本研究中,我们使用卷积长短期记忆深度神经网络(conv-LSTM)从标准CAC扫描和低剂量非门控扫描(CT衰减校正图)中自动得出冠状动脉钙化评分(CAC)。我们使用9543次扫描训练convLSTM以分割CAC。训练了一个U-Net模型作为参考方法。这两种模型均在OrCaCs数据集(n = 32)和未进行过冠状动脉干预且同期进行了CTAC标准CAC扫描的保留队列(n = 507)中进行了验证。使用科恩kappa系数和一致性矩阵评估四个CAC评分类别(极低:<10;低:10-100;中度:101-400;高:>400)中的一致性。conv-LSTM模型在中央处理器(CPU)上得出结果的中位时间(6.18秒,四分位间距[IQR]:5.99,6.3)明显短于U-Net(10.1秒,IQR:9.82,15.9秒,p<0.0001)。与U-Net(22.31Gb)相比,我们的模型在训练期间的内存消耗要低得多(13.11Gb)。在与专家注释的一致性方面,conv-LSTM的表现与U-Net相当,但推理时间明显更短,内存消耗更低。

相似文献

1
Calcium scoring in low-dose ungated chest CT scans using convolutional long-short term memory networks.
Proc SPIE Int Soc Opt Eng. 2022 Feb-Mar;12032. doi: 10.1117/12.2613147. Epub 2022 Apr 4.
2
Reproducibility of quantitative coronary calcium scoring from PET/CT attenuation maps: comparison to ECG-gated CT scans.
Eur J Nucl Med Mol Imaging. 2022 Oct;49(12):4122-4132. doi: 10.1007/s00259-022-05866-x. Epub 2022 Jun 25.
3
4
Deep Learning of Coronary Calcium Scores From PET/CT Attenuation Maps Accurately Predicts Adverse Cardiovascular Events.
JACC Cardiovasc Imaging. 2023 May;16(5):675-687. doi: 10.1016/j.jcmg.2022.06.006. Epub 2022 Sep 14.
5
Automatic determination of cardiovascular risk by CT attenuation correction maps in Rb-82 PET/CT.
J Nucl Cardiol. 2018 Dec;25(6):2133-2142. doi: 10.1007/s12350-017-0866-3. Epub 2017 Apr 4.
6
Automatic coronary artery calcium scoring in cardiac CT angiography using paired convolutional neural networks.
Med Image Anal. 2016 Dec;34:123-136. doi: 10.1016/j.media.2016.04.004. Epub 2016 Apr 21.
10
Influence of computed tomography slice thickness on deep learning-based, automatic coronary artery calcium scoring software performance.
Quant Imaging Med Surg. 2023 Jul 1;13(7):4257-4267. doi: 10.21037/qims-22-835. Epub 2023 Jan 5.

引用本文的文献

2
Predicting mortality from AI cardiac volumes mass and coronary calcium on chest computed tomography.
Nat Commun. 2024 Mar 29;15(1):2747. doi: 10.1038/s41467-024-46977-3.
3
Automated vessel-specific coronary artery calcification quantification with deep learning in a large multi-centre registry.
Eur Heart J Cardiovasc Imaging. 2024 Jun 28;25(7):976-985. doi: 10.1093/ehjci/jeae045.
4

本文引用的文献

1
Automatic coronary artery calcium scoring from unenhanced-ECG-gated CT using deep learning.
Diagn Interv Imaging. 2021 Nov;102(11):683-690. doi: 10.1016/j.diii.2021.05.004. Epub 2021 Jun 5.
2
End-to-End, Pixel-Wise Vessel-Specific Coronary and Aortic Calcium Detection and Scoring Using Deep Learning.
Diagnostics (Basel). 2021 Feb 2;11(2):215. doi: 10.3390/diagnostics11020215.
3
Deep convolutional neural networks to predict cardiovascular risk from computed tomography.
Nat Commun. 2021 Jan 29;12(1):715. doi: 10.1038/s41467-021-20966-2.
4
Focal Loss for Dense Object Detection.
IEEE Trans Pattern Anal Mach Intell. 2020 Feb;42(2):318-327. doi: 10.1109/TPAMI.2018.2858826. Epub 2018 Jul 23.
5
Rationale and design of the REgistry of Fast Myocardial Perfusion Imaging with NExt generation SPECT (REFINE SPECT).
J Nucl Cardiol. 2020 Jun;27(3):1010-1021. doi: 10.1007/s12350-018-1326-4. Epub 2018 Jun 19.
6
Automatic determination of cardiovascular risk by CT attenuation correction maps in Rb-82 PET/CT.
J Nucl Cardiol. 2018 Dec;25(6):2133-2142. doi: 10.1007/s12350-017-0866-3. Epub 2017 Apr 4.
7
ASNC imaging guidelines/SNMMI procedure standard for positron emission tomography (PET) nuclear cardiology procedures.
J Nucl Cardiol. 2016 Oct;23(5):1187-1226. doi: 10.1007/s12350-016-0522-3. Epub 2016 Jul 8.
9
Measuring coronary artery calcification using positron emission tomography-computed tomography attenuation correction images.
Eur Heart J Cardiovasc Imaging. 2012 Sep;13(9):786-92. doi: 10.1093/ehjci/jes079. Epub 2012 Apr 17.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验