Suppr超能文献

内生菌与病原菌在植物维管束中的定殖差异。

Differential Colonization of the Plant Vasculature Between Endophytic Versus Pathogenic Strains.

机构信息

Department of Biochemistry and Molecular Biology and the Plant Biology Graduate Program, University of Massachusetts, Amherst, MA 01003, U.S.A.

出版信息

Mol Plant Microbe Interact. 2023 Jan;36(1):4-13. doi: 10.1094/MPMI-08-22-0166-SC. Epub 2023 Jan 9.

Abstract

Plant xylem colonization is the hallmark of vascular wilt diseases caused by phytopathogens within the species complex. Recently, xylem colonization has also been reported among endophytic strains, resulting in some uncertainty. This study compares xylem colonization processes by pathogenic versus endophytic strains in and , using pathogen Fo5176, tomato pathogen Fol4287, and the endophyte Fo47, which can colonize both plant hosts. We observed that all strains were able to advance from epidermis to endodermis within 3 days postinoculation (dpi) and reached the root xylem at 4 dpi. However, this shared progression was restricted to lateral roots and the elongation zone of the primary root. Only pathogens reached the xylem above the primary-root maturation zone (PMZ). Related to the distinct colonization patterns, we also observed stronger induction of callose at the PMZ and lignin deposition at primary-lateral root junctions by the endophyte in both plants. This observation was further supported by stronger induction of genes involved in callose and lignin biosynthesis during the endophytic colonization (Fo47) compared with the pathogenic interaction (Fo5176). Moreover, both pathogens encode more plant cell wall-degrading enzymes than the endophyte Fo47. Therefore, observed differences in callose and lignin deposition could be the combination of host production and the subsequent fungal degradation. In summary, this study demonstrates spatial differences between endophytic and pathogenic colonization, strongly suggesting that further investigations of molecular arm-races are needed to understand how plants differentiate friend from foe. [Formula: see text] Copyright © 2023 The Author(s). This is an open access article distributed under the CC BY-NC-ND 4.0 International license.

摘要

植物木质部的定殖是由种复合体中的植物病原体引起的维管束萎蔫病的标志。最近,木质部的定殖也在内生菌株中被报道,这导致了一些不确定性。本研究比较了致病性和内生菌株在拟南芥和番茄中的木质部定殖过程,使用的病原体 Fo5176、番茄病原体 Fol4287 和可以定殖这两种植物宿主的内生菌 Fo47。我们观察到,所有菌株都能够在接种后 3 天内从表皮向内皮层推进,并在 4 天到达根木质部。然而,这种共同的进展仅限于侧根和主根伸长区。只有病原体能够到达主根成熟区(PMZ)以上的木质部。与明显的定殖模式相关,我们还观察到内生菌在两种植物中,在 PMZ 处诱导了更多的胼胝质,在主侧根连接处沉积了更多的木质素。这一观察结果进一步得到了以下证据的支持:与致病性相互作用(Fo5176)相比,内生定殖(Fo47)过程中参与胼胝质和木质素生物合成的基因的诱导更强。此外,两种病原体编码的植物细胞壁降解酶都多于内生菌 Fo47。因此,观察到的胼胝质和木质素沉积的差异可能是宿主产生和随后真菌降解的组合。总之,本研究表明内生和致病性定殖之间存在空间差异,强烈表明需要进一步研究分子军备竞赛,以了解植物如何区分敌友。

相似文献

1
Differential Colonization of the Plant Vasculature Between Endophytic Versus Pathogenic Strains.
Mol Plant Microbe Interact. 2023 Jan;36(1):4-13. doi: 10.1094/MPMI-08-22-0166-SC. Epub 2023 Jan 9.
2
First specific detection and validation of tomato wilt caused by using a PCR assay.
PeerJ. 2023 Nov 29;11:e16473. doi: 10.7717/peerj.16473. eCollection 2023.
3
Signs and symptoms to determine if a patient presenting in primary care or hospital outpatient settings has COVID-19.
Cochrane Database Syst Rev. 2022 May 20;5(5):CD013665. doi: 10.1002/14651858.CD013665.pub3.
4
Systemic pharmacological treatments for chronic plaque psoriasis: a network meta-analysis.
Cochrane Database Syst Rev. 2017 Dec 22;12(12):CD011535. doi: 10.1002/14651858.CD011535.pub2.
5
Systemic pharmacological treatments for chronic plaque psoriasis: a network meta-analysis.
Cochrane Database Syst Rev. 2021 Apr 19;4(4):CD011535. doi: 10.1002/14651858.CD011535.pub4.
6
Molecular identification and antimicrobial potential of endophytic fungi against some grapevine pathogens.
PLoS One. 2024 Oct 24;19(10):e0309041. doi: 10.1371/journal.pone.0309041. eCollection 2024.
8
Thrombolysis for acute ischaemic stroke.
Cochrane Database Syst Rev. 2003(3):CD000213. doi: 10.1002/14651858.CD000213.
10
Impact of residual disease as a prognostic factor for survival in women with advanced epithelial ovarian cancer after primary surgery.
Cochrane Database Syst Rev. 2022 Sep 26;9(9):CD015048. doi: 10.1002/14651858.CD015048.pub2.

引用本文的文献

4
Methods to Observe Plant Tissue Colonization by Fusarium oxysporum.
Curr Protoc. 2025 Jun;5(6):e70152. doi: 10.1002/cpz1.70152.
6
How genomics can help unravel the evolution of endophytic fungi.
World J Microbiol Biotechnol. 2025 Apr 28;41(5):153. doi: 10.1007/s11274-025-04375-x.
7
A virulent milRNA of f. sp. impairs plant resistance by targeting banana AP2 transcription factor coding gene .
Hortic Res. 2024 Dec 28;12(4):uhae361. doi: 10.1093/hr/uhae361. eCollection 2025 Apr.
8
Closed Systems to Study Plant-Filamentous Fungi Associations: Emphasis on Microscopic Analyses.
Bio Protoc. 2025 Feb 20;15(4):e5186. doi: 10.21769/BioProtoc.5186.
9
Fusarium as potential pathogenic fungus of Ginger (Zingiber officinale Roscoe) wilt disease.
NPJ Sci Food. 2024 Oct 3;8(1):72. doi: 10.1038/s41538-024-00312-8.
10
Editorial: Study on plant differentiation between beneficial and pathogenic microorganisms.
Front Plant Sci. 2024 Sep 10;15:1481110. doi: 10.3389/fpls.2024.1481110. eCollection 2024.

本文引用的文献

3
Secreted in Xylem Genes: Drivers of Host Adaptation in .
Front Plant Sci. 2021 Apr 22;12:628611. doi: 10.3389/fpls.2021.628611. eCollection 2021.
4
Metatranscriptomic Comparison of Endophytic and Pathogenic -Arabidopsis Interactions Reveals Plant Transcriptional Plasticity.
Mol Plant Microbe Interact. 2021 Sep;34(9):1071-1083. doi: 10.1094/MPMI-03-21-0063-R. Epub 2021 Oct 11.
5
A Chromosome-Scale Genome Assembly for the Strain Fo5176 To Establish a Model -Fungal Pathosystem.
G3 (Bethesda). 2020 Oct 5;10(10):3549-3555. doi: 10.1534/g3.120.401375.
6
Accessory Chromosomes in .
Phytopathology. 2020 Sep;110(9):1488-1496. doi: 10.1094/PHYTO-03-20-0069-IA. Epub 2020 Aug 6.
7
Chromosome-Scale Genome Assembly of Strain Fo47, a Fungal Endophyte and Biocontrol Agent.
Mol Plant Microbe Interact. 2020 Sep;33(9):1108-1111. doi: 10.1094/MPMI-05-20-0116-A. Epub 2020 Jul 28.
8
Biocontrol by Using Endophyte-Mediated Resistance.
Front Plant Sci. 2020 Feb 6;11:37. doi: 10.3389/fpls.2020.00037. eCollection 2020.
9
Genome Sequence of f. sp. , a Brassicaceae Pathogen.
Mol Plant Microbe Interact. 2020 Apr;33(4):569-572. doi: 10.1094/MPMI-11-19-0324-A. Epub 2020 Mar 3.
10
OrthoFinder: phylogenetic orthology inference for comparative genomics.
Genome Biol. 2019 Nov 14;20(1):238. doi: 10.1186/s13059-019-1832-y.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验