Suppr超能文献

基于Copula 的二元连续型、二分型或混合表型的集合变异关联检验。

A copula-based set-variant association test for bivariate continuous, binary or mixed phenotypes.

机构信息

Department of Epidemiology, Biostatistics and Occupational Health, McGill University, Montreal, QC, Canada.

Département de Mathématiques, Université du Québec à Montréal, Montreal, QC, Canada.

出版信息

Int J Biostat. 2022 Oct 24;19(2):369-387. doi: 10.1515/ijb-2022-0010. eCollection 2023 Nov 1.

Abstract

In genome wide association studies (GWAS), researchers are often dealing with dichotomous and non-normally distributed traits, or a mixture of discrete-continuous traits. However, most of the current region-based methods rely on multivariate linear mixed models (mvLMMs) and assume a multivariate normal distribution for the phenotypes of interest. Hence, these methods are not applicable to disease or non-normally distributed traits. Therefore, there is a need to develop unified and flexible methods to study association between a set of (possibly rare) genetic variants and non-normal multivariate phenotypes. Copulas are multivariate distribution functions with uniform margins on the [0, 1] interval and they provide suitable models to deal with non-normality of errors in multivariate association studies. We propose a novel unified and flexible copula-based multivariate association test (CBMAT) for discovering association between a genetic region and a bivariate continuous, binary or mixed phenotype. We also derive a data-driven analytic -value procedure of the proposed region-based score-type test. Through simulation studies, we demonstrate that CBMAT has well controlled type I error rates and higher power to detect associations compared with other existing methods, for discrete and non-normally distributed traits. At last, we apply CBMAT to detect the association between two genes located on chromosome 11 and several lipid levels measured on 1477 subjects from the ASLPAC study.

摘要

在全基因组关联研究 (GWAS) 中,研究人员通常处理二分类和非正态分布的性状,或离散连续性状的混合。然而,大多数当前基于区域的方法依赖于多变量线性混合模型 (mvLMM),并假设感兴趣的表型呈多元正态分布。因此,这些方法不适用于疾病或非正态分布的性状。因此,需要开发统一和灵活的方法来研究一组(可能罕见的)遗传变异与非正态多元表型之间的关联。Copulas 是具有 [0,1] 区间均匀边缘的多元分布函数,它们提供了适合处理多元关联研究中误差非正态性的模型。我们提出了一种新颖的基于 Copula 的统一灵活的多元关联测试 (CBMAT),用于发现遗传区域与双变量连续、二分类或混合表型之间的关联。我们还推导出了所提出的基于区域的评分型检验的基于数据的分析 - 值过程。通过模拟研究,我们证明与其他现有方法相比,CBMAT 具有良好的控制 I 型错误率和更高的检测关联的能力,用于离散和非正态分布的性状。最后,我们将 CBMAT 应用于检测位于第 11 号染色体上的两个基因与来自 ASLPAC 研究的 1477 名受试者测量的几个脂质水平之间的关联。

相似文献

1
A copula-based set-variant association test for bivariate continuous, binary or mixed phenotypes.
Int J Biostat. 2022 Oct 24;19(2):369-387. doi: 10.1515/ijb-2022-0010. eCollection 2023 Nov 1.
2
A novel rare variants association test for binary traits in family-based designs via copulas.
Stat Methods Med Res. 2023 Nov;32(11):2096-2122. doi: 10.1177/09622802231197977. Epub 2023 Oct 13.
3
A flexible copula-based approach for the analysis of secondary phenotypes in ascertained samples.
Stat Med. 2020 Feb 28;39(5):517-543. doi: 10.1002/sim.8416. Epub 2019 Dec 23.
4
Powerful rare variant association testing in a copula-based joint analysis of multiple phenotypes.
Genet Epidemiol. 2020 Jan;44(1):26-40. doi: 10.1002/gepi.22265. Epub 2019 Nov 15.
5
A unified method for rare variant analysis of gene-environment interactions.
Stat Med. 2020 Mar 15;39(6):801-813. doi: 10.1002/sim.8446. Epub 2019 Dec 4.
6
Semiparametric Allelic Tests for Mapping Multiple Phenotypes: Binomial Regression and Mahalanobis Distance.
Genet Epidemiol. 2015 Dec;39(8):635-50. doi: 10.1002/gepi.21930. Epub 2015 Oct 23.
7
Gene-based association analysis for bivariate time-to-event data through functional regression with copula models.
Biometrics. 2020 Jun;76(2):619-629. doi: 10.1111/biom.13165. Epub 2019 Nov 14.
8
A rare variant association test in family-based designs and non-normal quantitative traits.
Stat Med. 2016 Mar 15;35(6):905-21. doi: 10.1002/sim.6750. Epub 2015 Sep 29.
9
A rank-based normalization method with the fully adjusted full-stage procedure in genetic association studies.
PLoS One. 2020 Jun 19;15(6):e0233847. doi: 10.1371/journal.pone.0233847. eCollection 2020.
10
A Comparison Study of Fixed and Mixed Effect Models for Gene Level Association Studies of Complex Traits.
Genet Epidemiol. 2016 Dec;40(8):702-721. doi: 10.1002/gepi.21984. Epub 2016 Jul 4.

本文引用的文献

1
Powerful rare variant association testing in a copula-based joint analysis of multiple phenotypes.
Genet Epidemiol. 2020 Jan;44(1):26-40. doi: 10.1002/gepi.22265. Epub 2019 Nov 15.
2
Gene-based association analysis for bivariate time-to-event data through functional regression with copula models.
Biometrics. 2020 Jun;76(2):619-629. doi: 10.1111/biom.13165. Epub 2019 Nov 14.
3
A Geometric Perspective on the Power of Principal Component Association Tests in Multiple Phenotype Studies.
J Am Stat Assoc. 2019;114(527):975-990. doi: 10.1080/01621459.2018.1513363. Epub 2019 Feb 26.
4
Multi-SKAT: General framework to test for rare-variant association with multiple phenotypes.
Genet Epidemiol. 2019 Feb;43(1):4-23. doi: 10.1002/gepi.22156. Epub 2018 Oct 8.
5
Rare variant association test with multiple phenotypes.
Genet Epidemiol. 2017 Apr;41(3):198-209. doi: 10.1002/gepi.22021. Epub 2016 Dec 31.
6
Multiple linear combination (MLC) regression tests for common variants adapted to linkage disequilibrium structure.
Genet Epidemiol. 2017 Feb;41(2):108-121. doi: 10.1002/gepi.22024. Epub 2016 Nov 25.
7
Statistical Methods for Testing Genetic Pleiotropy.
Genetics. 2016 Oct;204(2):483-497. doi: 10.1534/genetics.116.189308. Epub 2016 Aug 15.
10
USAT: A Unified Score-Based Association Test for Multiple Phenotype-Genotype Analysis.
Genet Epidemiol. 2016 Jan;40(1):20-34. doi: 10.1002/gepi.21937. Epub 2015 Dec 7.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验