Suppr超能文献

SUMMIT:一种综合方法可提高转录组数据插补质量,从而改善因果基因识别。

SUMMIT: An integrative approach for better transcriptomic data imputation improves causal gene identification.

机构信息

Department of Statistics, Florida State University, Tallahassee, FL, USA.

Cancer Epidemiology Division, Population Sciences in the Pacific Program, University of Hawaii Cancer Center, University of Hawaii at Manoa, Honolulu, HI, USA.

出版信息

Nat Commun. 2022 Oct 25;13(1):6336. doi: 10.1038/s41467-022-34016-y.

Abstract

Genes with moderate to low expression heritability may explain a large proportion of complex trait etiology, but such genes cannot be sufficiently captured in conventional transcriptome-wide association studies (TWASs), partly due to the relatively small available reference datasets for developing expression genetic prediction models to capture the moderate to low genetically regulated components of gene expression. Here, we introduce a method, the Summary-level Unified Method for Modeling Integrated Transcriptome (SUMMIT), to improve the expression prediction model accuracy and the power of TWAS by using a large expression quantitative trait loci (eQTL) summary-level dataset. We apply SUMMIT to the eQTL summary-level data provided by the eQTLGen consortium. Through simulation studies and analyses of genome-wide association study summary statistics for 24 complex traits, we show that SUMMIT improves the accuracy of expression prediction in blood, successfully builds expression prediction models for genes with low expression heritability, and achieves higher statistical power than several benchmark methods. Finally, we conduct a case study of COVID-19 severity with SUMMIT and identify 11 likely causal genes associated with COVID-19 severity.

摘要

中度至低度表达遗传性的基因可能解释了复杂性状病因的很大一部分,但由于可用于开发表达遗传预测模型的参考数据集相对较小,这些基因不能在常规的全转录组关联研究 (TWAS) 中充分捕捉到,以捕捉基因表达的中度至低度遗传调控成分。在这里,我们引入了一种方法,即汇总水平综合转录组建模方法 (SUMMIT),通过使用大型表达数量性状基因座 (eQTL) 汇总数据集来提高表达预测模型的准确性和 TWAS 的功效。我们将 SUMMIT 应用于 eQTLGen 联盟提供的 eQTL 汇总水平数据。通过对 24 种复杂性状的全基因组关联研究汇总统计数据的模拟研究和分析,我们表明 SUMMIT 提高了血液中表达预测的准确性,成功地为低表达遗传性的基因建立了表达预测模型,并比几种基准方法实现了更高的统计功效。最后,我们用 SUMMIT 对 COVID-19 严重程度进行了案例研究,确定了与 COVID-19 严重程度相关的 11 个可能的因果基因。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/dbc4/9596501/13ea52ba6dcc/41467_2022_34016_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验