Palma Juliana, Pierdominici-Sottile Gustavo
Departamento de Ciencia y Tecnología, Universidad Nacional de Quilmes.
Consejo Nacional de Investigaciones Científicas y Técnicas.
Chemphyschem. 2023 Jan 17;24(2):e202200491. doi: 10.1002/cphc.202200491. Epub 2022 Oct 26.
Principal Component Analysis (PCA) is a procedure widely used to examine data collected from molecular dynamics simulations of biological macromolecules. It allows for greatly reducing the dimensionality of their configurational space, facilitating further qualitative and quantitative analysis. Its simplicity and relatively low computational cost explain its extended use. However, a judicious implementation of PCA requires the knowledge of its theoretical grounds as well as its weaknesses and capabilities. In this article, we review these issues and discuss several strategies developed over the last years to mitigate the main PCA flaws and enhance the reproducibility of its results.
主成分分析(PCA)是一种广泛用于检查从生物大分子分子动力学模拟收集的数据的方法。它能够大大降低其构象空间的维度,便于进一步进行定性和定量分析。其简单性和相对较低的计算成本解释了它的广泛应用。然而,明智地实施PCA需要了解其理论基础以及其弱点和能力。在本文中,我们回顾这些问题,并讨论过去几年开发的几种策略,以减轻PCA的主要缺陷并提高其结果的可重复性。