Suppr超能文献

关于主成分分析在表征生物大分子分子动力学模拟中的应用:基础及有效使用技巧

On the Uses of PCA to Characterise Molecular Dynamics Simulations of Biological Macromolecules: Basics and Tips for an Effective Use.

作者信息

Palma Juliana, Pierdominici-Sottile Gustavo

机构信息

Departamento de Ciencia y Tecnología, Universidad Nacional de Quilmes.

Consejo Nacional de Investigaciones Científicas y Técnicas.

出版信息

Chemphyschem. 2023 Jan 17;24(2):e202200491. doi: 10.1002/cphc.202200491. Epub 2022 Oct 26.

Abstract

Principal Component Analysis (PCA) is a procedure widely used to examine data collected from molecular dynamics simulations of biological macromolecules. It allows for greatly reducing the dimensionality of their configurational space, facilitating further qualitative and quantitative analysis. Its simplicity and relatively low computational cost explain its extended use. However, a judicious implementation of PCA requires the knowledge of its theoretical grounds as well as its weaknesses and capabilities. In this article, we review these issues and discuss several strategies developed over the last years to mitigate the main PCA flaws and enhance the reproducibility of its results.

摘要

主成分分析(PCA)是一种广泛用于检查从生物大分子分子动力学模拟收集的数据的方法。它能够大大降低其构象空间的维度,便于进一步进行定性和定量分析。其简单性和相对较低的计算成本解释了它的广泛应用。然而,明智地实施PCA需要了解其理论基础以及其弱点和能力。在本文中,我们回顾这些问题,并讨论过去几年开发的几种策略,以减轻PCA的主要缺陷并提高其结果的可重复性。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验