Department of Gastrointestinal Surgery, Graduate School of Medicine, Kyoto University, Kyoto 606-8507, Japan.
Department of Surgery, Kyoto City Hospital, Kyoto 604-8845, Japan.
Cells. 2022 Oct 18;11(20):3273. doi: 10.3390/cells11203273.
Reprogramming of energy metabolism is regarded as one of the hallmarks of cancer; in particular, oncogenic RAS has been shown to be a critical regulator of cancer metabolism. Recently, asparagine metabolism has been heavily investigated as a novel target for cancer treatment. For example, Knott et al. showed that asparagine bioavailability governs metastasis in a breast cancer model. Gwinn et al. reported the therapeutic vulnerability of asparagine biosynthesis in KRAS-driven non-small cell lung cancer. We previously reported that -mutated CRC cells can adapt to glutamine depletion through upregulation of asparagine synthetase (ASNS), an enzyme that synthesizes asparagine from aspartate. In our previous study, we assessed the efficacy of asparagine depletion using human cancer cell lines. In the present study, we evaluated the clinical relevance of asparagine depletion using a novel patient-derived spheroid xenograft (PDSX) mouse model. First, we examined ASNS expression in 38 spheroid lines and found that 12 lines (12/37, 32.4%) displayed high ASNS expression, whereas 26 lines (25/37, 67.6%) showed no ASNS expression. Next, to determine the role of asparagine metabolism in tumor growth, we established ASNS-knockdown spheroid lines using lentiviral short hairpin RNA constructs targeting ASNS. An in vitro cell proliferation assay demonstrated a significant decrease in cell proliferation upon asparagine depletion in the ASNS-knockdown spheroid lines, and this was not observed in the control spheroids lines. In addition, we examined asparagine inhibition with the anti-leukemia drug L-asparaginase (L-Asp) and observed a considerable reduction in cell proliferation at a low concentration (0.1 U/mL) in the ASNS-knockdown spheroid lines, whereas it exhibited limited inhibition of control spheroid lines at the same concentration. Finally, we used the PDSX model to assess the effects of asparagine depletion on tumor growth in vivo. The nude mice injected with ASNS-knockdown or control spheroid lines were administered with L-Asp once a day for 28 days. Surprisingly, in mice injected with ASNS-knockdown spheroids, the administration of L-Asp dramatically inhibited tumor engraftment. On the other hands, in mice injected with control spheroids, the administration of L-Asp had no effect on tumor growth inhibition at all. These results suggest that ASNS inhibition could be critical in targeting asparagine metabolism in cancers.
重新编程能量代谢被认为是癌症的标志之一;特别是,致癌 RAS 已被证明是癌症代谢的关键调节剂。最近,天冬酰胺代谢已被深入研究作为癌症治疗的新靶点。例如,Knott 等人表明,天冬酰胺生物利用度控制乳腺癌模型中的转移。Gwinn 等人报道了 KRAS 驱动的非小细胞肺癌中天冬酰胺生物合成的治疗脆弱性。我们之前报道过,-突变的 CRC 细胞可以通过上调天冬酰胺合成酶 (ASNS) 来适应谷氨酰胺耗竭,ASNS 是一种从天冬氨酸合成天冬酰胺的酶。在我们之前的研究中,我们使用人类癌细胞系评估了天冬酰胺耗竭的疗效。在本研究中,我们使用新型患者来源的球体异种移植 (PDSX) 小鼠模型评估了天冬酰胺耗竭的临床相关性。首先,我们检查了 38 个球体系中的 ASNS 表达,发现 12 个系(12/37,32.4%)显示高 ASNS 表达,而 26 个系(25/37,67.6%)没有 ASNS 表达。接下来,为了确定天冬酰胺代谢在肿瘤生长中的作用,我们使用靶向 ASNS 的慢病毒短发夹 RNA 构建体建立了 ASNS 敲低球体系。体外细胞增殖试验表明,在 ASNS 敲低球体系中天冬酰胺耗竭后细胞增殖显著减少,而在对照球体系中则没有观察到。此外,我们用抗白血病药物 L-天冬酰胺酶 (L-Asp) 检查了天冬酰胺抑制作用,并观察到在低浓度(0.1 U/mL)下 ASNS 敲低球体系中的细胞增殖有相当大的减少,而在相同浓度下对对照球体系的抑制作用有限。最后,我们使用 PDSX 模型评估了体内天冬酰胺耗竭对肿瘤生长的影响。将 ASNS 敲低或对照球体系注射到裸鼠中,每天一次给予 L-Asp 共 28 天。令人惊讶的是,在注射了 ASNS 敲低球体的小鼠中,L-Asp 的给药显著抑制了肿瘤植入。另一方面,在注射对照球体的小鼠中,L-Asp 的给药根本没有抑制肿瘤生长。这些结果表明,ASNS 抑制可能是靶向癌症中天冬酰胺代谢的关键。