Suppr超能文献

通过等离子体增强原子层沉积(PEALD)在SiO/Si上生长的TiN/La:HfO/TiN叠层中氮化钛电极的结构、氧含量和电学性能

Structure, Oxygen Content and Electric Properties of Titanium Nitride Electrodes in TiN/La:HfO/TiN Stacks Grown by PEALD on SiO/Si.

作者信息

Suvorova Elena I, Uvarov Oleg V, Chizh Kirill V, Klimenko Alexey A, Buffat Philippe A

机构信息

A.V. Shubnikov Institute of Crystallography, Federal Scientific Research Centre "Crystallography and Photonics" of the Russian Academy of Sciences, Leninsky pr. 59, Moscow 119333, Russia.

Prokhorov General Physics Institute of the Russian Academy of Sciences, Vavilov str. 38, Moscow 119991, Russia.

出版信息

Nanomaterials (Basel). 2022 Oct 14;12(20):3608. doi: 10.3390/nano12203608.

Abstract

This work reports experimental results of the quantitative determination of oxygen and band gap measurement in the TiN electrodes in planar TiN top/La:HfO/TiN bottom MIM stacks obtained by plasma enhanced atomic layer deposition on SiO. Methodological aspects of extracting structural and chemical information from (scanning) transmission electron microscopy imaging (bright field and high angular annular dark field), energy dispersive X-ray spectrometry and electron energy loss spectroscopy are thoroughly considered. The study shows that the oxygen concentration is higher in the TiNO bottom electrode (about 14.2 ± 0.1 at. %) compared to the TiNO top electrode (about 11.4 ± 0.5 at. %). The following average stoichiometric formulas are TiN.O. top and TiN.O. bottom for top and bottom electrodes, respectively. The amount of oxygen incorporated into TiN during PEALD because of oxygen impurities in the plasma is minor compared to that because of diffusion from SiO and HfO. This asymmetry, together with results on a sample grown on a Si substrate, shows that incorporating oxygen impurity from the plasma itself is a minor part compared to diffusion from the SiO substrate and HfO dielectric during the PEALD growth. We observe the presence of TiO at the interface between the Hf oxide layer and the Ti nitride electrodes as well as at the SiO interface. EELS analysis led to a band gap ranging from 2.2 to 2.5 eV for the bottom TiNO and 1.7-2.2 eV for the top TiNO, which is in fair agreement with results obtained on the top TiN electrode (1.6 ± 01 eV) using optical absorption spectra. Measurement of sheet resistance, resistivity and temperature coefficient of resistance by a four-point probe on the top TiNO electrode from 20 to 100 °C corresponds to the typical values for semiconductors.

摘要

本工作报道了通过等离子体增强原子层沉积在SiO上制备的平面TiN顶/La:HfO/TiN底MIM叠层中TiN电极的氧定量测定和带隙测量的实验结果。全面考虑了从(扫描)透射电子显微镜成像(明场和高角度环形暗场)、能量色散X射线光谱和电子能量损失光谱中提取结构和化学信息的方法学方面。研究表明,TiNO底电极中的氧浓度(约14.2±0.1原子%)高于TiNO顶电极(约11.4±0.5原子%)。顶电极和底电极的平均化学计量式分别为TiN.O.顶和TiN.O.底。与因从SiO和HfO扩散而掺入的氧相比,等离子体增强原子层沉积(PEALD)过程中因等离子体中的氧杂质而掺入TiN中的氧量较少。这种不对称性以及在Si衬底上生长的样品的结果表明,与PEALD生长过程中从SiO衬底和HfO电介质扩散相比,等离子体本身掺入的氧杂质占比很小。我们观察到在Hf氧化物层与Ti氮化物电极之间的界面以及SiO界面处存在TiO。电子能量损失谱(EELS)分析得出底TiNO的带隙范围为2.2至2.5 eV,顶TiNO的带隙范围为1.7 - 2.2 eV,这与使用光吸收光谱在顶TiN电极上获得的结果(1.6±0.1 eV)相当吻合。在20至100°C范围内,通过四点探针测量顶TiNO电极的薄层电阻、电阻率和电阻温度系数,其对应于半导体的典型值。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6f82/9611760/cf86822e6eec/nanomaterials-12-03608-g001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验