Waters Margo, Hopf Juliane, Tam Emma, Wallace Stephanie, Chang Jordan, Bennett Zach, Aquino Hadrian, Roeder Ryan K, Helquist Paul, Stack M Sharon, Nallathamby Prakash D
Department of Pre-Professional Studies, University of Notre Dame, Notre Dame, IN 46556, USA.
The Berthiaume Institute for Precision Health, University of Notre Dame, Notre Dame, IN 46556, USA.
Pharmaceuticals (Basel). 2022 Sep 30;15(10):1216. doi: 10.3390/ph15101216.
There is a need to improve current cancer treatment regimens to reduce systemic toxicity, to positively impact the quality-of-life post-treatment. We hypothesized the negation of off-target toxicity of anthracyclines (e.g., Doxorubicin) by delivering Doxorubicin on magneto-electric silica nanoparticles (Dox-MagSiNs) to cancer cells. Dox-MagSiNs were completely biocompatible with all cell types and are therapeutically inert till the release of Doxorubicin from the MagSiNs at the cancer cells location. The MagSiNs themselves are comprised of biocompatible components with a magnetostrictive cobalt ferrite core (4−6 nm) surrounded by a piezoelectric fused silica shell of 1.5 nm to 2 nm thickness. The MagSiNs possess T2-MRI contrast properties on par with RESOVIST™ due to their cobalt ferrite core. Additionally, the silica shell surrounding the core was volume loaded with green or red fluorophores to fluorescently track the MagSiNs in vitro. This makes the MagSiNs a suitable candidate for trackable, drug nanocarriers. We used metastatic triple-negative breast cancer cells (MDAMB231), ovarian cancer cells (A2780), and prostate cancer cells (PC3) as our model cancer cell lines. Human umbilical vein endothelial cells (HUVEC) were used as control cell lines to represent blood-vessel cells that suffer from the systemic toxicity of Doxorubicin. In the presence of an external magnetic field that is 300× times lower than an MRI field, we successfully nanoporated the cancer cells, then triggered the release of 500 nM of doxorubicin from Dox-MagSiNs to successfully kill >50% PC3, >50% A2780 cells, and killed 125% more MDAMB231 cells than free Dox.HCl. In control HUVECs, the Dox-MagSiNs did not nanoporate into the HUVECS and did not exhibited any cytotoxicity at all when there was no triggered release of Dox.HCl. Currently, the major advantages of our approach are, (i) the MagSiNs are biocompatible in vitro and in vivo; (ii) the label-free nanoporation of Dox-MagSiNs into cancer cells and not the model blood vessel cell line; (iii) the complete cancellation of the cytotoxicity of Doxorubicin in the Dox-MagSiNs form; (iv) the clinical impact of such a nanocarrier will be that it will be possible to increase the current upper limit for cumulative-dosages of anthracyclines through multiple dosing, which in turn will improve the anti-cancer efficacy of anthracyclines.
有必要改进当前的癌症治疗方案,以降低全身毒性,从而对治疗后的生活质量产生积极影响。我们假设通过将阿霉素(例如多柔比星)负载于磁电二氧化硅纳米颗粒(Dox-MagSiNs)上递送至癌细胞,可消除阿霉素的脱靶毒性。Dox-MagSiNs与所有细胞类型完全生物相容,在阿霉素从磁电二氧化硅纳米颗粒在癌细胞位置释放之前,其治疗活性处于惰性状态。磁电二氧化硅纳米颗粒本身由生物相容性成分组成,具有一个4-6纳米的磁致伸缩钴铁氧体核心,周围是一层厚度为1.5至2纳米的压电熔融二氧化硅壳。由于其钴铁氧体核心,磁电二氧化硅纳米颗粒具有与RESOVIST™相当的T2-MRI造影特性。此外,核心周围的二氧化硅壳中负载了绿色或红色荧光团,以便在体外对磁电二氧化硅纳米颗粒进行荧光追踪。这使得磁电二氧化硅纳米颗粒成为可追踪药物纳米载体的合适候选者。我们使用转移性三阴性乳腺癌细胞(MDAMB231)、卵巢癌细胞(A2780)和前列腺癌细胞(PC3)作为模型癌细胞系。人脐静脉内皮细胞(HUVEC)用作对照细胞系,以代表遭受多柔比星全身毒性的血管细胞。在一个比MRI场低300倍的外部磁场存在下,我们成功地对癌细胞进行了纳米穿孔,然后触发从Dox-MagSiNs中释放500 nM的多柔比星,成功杀死了超过50%的PC3细胞、超过50%的A2780细胞,并且与游离的盐酸多柔比星相比,杀死的MDAMB231细胞多125%。在对照HUVEC细胞中,当没有触发盐酸多柔比星释放时,Dox-MagSiNs没有对HUVEC细胞进行纳米穿孔,并且根本没有表现出任何细胞毒性。目前,我们方法的主要优点是:(i)磁电二氧化硅纳米颗粒在体外和体内均具有生物相容性;(ii)Dox-MagSiNs可对癌细胞进行无标记纳米穿孔,而不会对模型血管细胞系进行纳米穿孔;(iii)完全消除了Dox-MagSiNs形式的多柔比星的细胞毒性;(iv)这种纳米载体的临床影响将是通过多次给药有可能提高当前阿霉素累积剂量的上限,这反过来将提高阿霉素的抗癌疗效。