Suppr超能文献

将RNA分子数据与先验知识驱动的联合深度半负矩阵分解相结合用于心力衰竭研究。

Integration of RNA molecules data with prior-knowledge driven Joint Deep Semi-Negative Matrix Factorization for heart failure study.

作者信息

Ma Zhihui, Chen Bin, Zhang Yongjun, Zeng Jinmei, Tao Jianping, Hu Yu

机构信息

Department of Cardiology, Shanghai Jiao Tong University School of Medicine, Shanghai, China.

出版信息

Front Genet. 2022 Oct 10;13:967363. doi: 10.3389/fgene.2022.967363. eCollection 2022.

Abstract

Heart failure (HF) is the main manifestation of cardiovascular disease. Recent studies have shown that various RNA molecules and their complex connections play an essential role in HF's pathogenesis and pathological progression. This paper aims to mine key RNA molecules associated with HF. We proposed a Prior-knowledge Driven Joint Deep Semi-Negative Matrix Factorization (PD-JDSNMF) model that uses a hierarchical nonlinear feature extraction method that integrates three types of data: mRNA, lncRNA, and miRNA. The PPI information is added to the model as prior knowledge, and the Laplacian constraint is used to help the model resist the noise in the genetic data. We used the PD-JDSNMF algorithm to identify significant co-expression modules. The elements in the module are then subjected to bioinformatics analysis and algorithm performance analysis. The results show that the PD-JDSNMF algorithm can robustly select biomarkers associated with HF. Finally, we built a heart failure diagnostic model based on multiple classifiers and using the Top 13 genes in the significant module, the AUC of the internal test set was up to 0.8714, and the AUC of the external validation set was up to 0.8329, which further confirmed the effectiveness of the PD-JDSNMF algorithm.

摘要

心力衰竭(HF)是心血管疾病的主要表现形式。最近的研究表明,各种RNA分子及其复杂的相互联系在HF的发病机制和病理进展中起着至关重要的作用。本文旨在挖掘与HF相关的关键RNA分子。我们提出了一种先验知识驱动的联合深度半负矩阵分解(PD-JDSNMF)模型,该模型使用一种分层非线性特征提取方法,整合了三种类型的数据:mRNA、lncRNA和miRNA。将蛋白质-蛋白质相互作用(PPI)信息作为先验知识添加到模型中,并使用拉普拉斯约束来帮助模型抵抗遗传数据中的噪声。我们使用PD-JDSNMF算法识别显著的共表达模块。然后对模块中的元素进行生物信息学分析和算法性能分析。结果表明,PD-JDSNMF算法能够稳健地选择与HF相关的生物标志物。最后,我们基于多个分类器构建了一个心力衰竭诊断模型,并使用显著模块中的前13个基因,内部测试集的AUC高达0.8714,外部验证集的AUC高达0.8329,这进一步证实了PD-JDSNMF算法的有效性。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a1ed/9589260/b6b1d6aff352/fgene-13-967363-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验