Suppr超能文献

成分限制对于印度大气颗粒物源归因至关重要。

Compositional Constraints are Vital for Atmospheric PM Source Attribution over India.

作者信息

Pai Sidhant J, Heald Colette L, Coe Hugh, Brooks James, Shephard Mark W, Dammers Enrico, Apte Joshua S, Luo Gan, Yu Fangqun, Holmes Christopher D, Venkataraman Chandra, Sadavarte Pankaj, Tibrewal Kushal

机构信息

Department of Civil and Environmental Engineering, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, Massachusetts 02139, United States.

Department of Earth, Atmospheric and Planetary Sciences, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, Massachusetts 02139, United States.

出版信息

ACS Earth Space Chem. 2022 Oct 20;6(10):2432-2445. doi: 10.1021/acsearthspacechem.2c00150. Epub 2022 Sep 16.

Abstract

India experiences some of the highest levels of ambient PM aerosol pollution in the world. However, due to the historical dearth of in situ measurements, chemical transport models that are often used to estimate PM exposure over the region are rarely evaluated. Here, we conduct a novel model comparison with speciated airborne measurements of fine aerosol, revealing large biases in the ammonium and nitrate simulations. To address this, we incorporate process-level changes to the model and use satellite observations from the Cross-track Infrared Sounder (CrIS) and the TROPOspheric Monitoring Instrument (TROPOMI) to constrain ammonia and nitrogen oxide emissions. The resulting simulation demonstrates significantly lower bias (NMB: 0.19; NMB: 0.61) when validated against the airborne aerosol measurements, particularly for the nitrate (NMB: 0.08; NMB: 1.64) and ammonium simulation (NMB: 0.49; NMB: 0.90). We use this validated simulation to estimate a population-weighted annual PM exposure of 61.4 μg m, with the RCO (residential, commercial, and other) and energy sectors contributing 21% and 19%, respectively, resulting in an estimated 961,000 annual PM-attributable deaths. Regional exposure and sectoral source contributions differ meaningfully in the improved simulation (compared to the baseline simulation). Our work highlights the critical role of speciated observational constraints in developing accurate model-based PM aerosol source attribution for health assessments and air quality management in India.

摘要

印度是世界上环境细颗粒物(PM)气溶胶污染水平最高的地区之一。然而,由于历史上缺乏实地测量数据,常用于估算该地区PM暴露量的化学传输模型很少得到评估。在此,我们对细气溶胶的特定机载测量数据进行了一次新颖的模型比较,结果显示铵和硝酸盐模拟存在较大偏差。为解决这一问题,我们在模型中纳入了过程层面的变化,并利用交叉跟踪红外探测仪(CrIS)和对流层监测仪器(TROPOMI)的卫星观测数据来约束氨和氮氧化物排放。与机载气溶胶测量数据进行验证时,所得模拟结果显示偏差显著降低(归一化平均偏差:0.19;归一化平均偏差:0.61),尤其是硝酸盐(归一化平均偏差:0.08;归一化平均偏差:1.64)和铵模拟(归一化平均偏差:0.49;归一化平均偏差:0.90)。我们利用这个经过验证的模拟结果来估算人口加权的年PM暴露量为61.4 μg/m³,其中住宅、商业及其他(RCO)部门和能源部门分别贡献了21%和19%,导致估计每年有96.1万人因PM导致死亡。在改进后的模拟中(与基线模拟相比),区域暴露和部门源贡献存在显著差异。我们的工作突出了特定观测约束在为印度的健康评估和空气质量管理开发基于模型的准确PM气溶胶源归因方面的关键作用。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验