Schmid Kerstin, Knote Andreas, Mück Alexander, Pfeiffer Keram, von Mammen Sebastian, Fischer Sabine C
Supramolecular and Cellular Simulations, Center for Computational and Theoretical Biology, Faculty of Biology, University of Würzburg, Würzburg, Germany.
Human Computer Interaction, Institute of Computer Science, Faculty of Mathematics and Computer Science, University of Würzburg, Würzburg, Germany.
Front Bioinform. 2022 Jan 26;1:774300. doi: 10.3389/fbinf.2021.774300. eCollection 2021.
In interdisciplinary fields such as systems biology, good communication between experimentalists and theorists is crucial for the success of a project. Theoretical modeling in physiology usually describes complex systems with many interdependencies. On one hand, these models have to be grounded on experimental data. On the other hand, experimenters must be able to understand the interdependent complexities of the theoretical model in order to interpret the model's results in the physiological context. We promote interactive, visual simulations as an engaging way to present theoretical models in physiology and to make complex processes tangible. Based on a requirements analysis, we developed a new model for gas exchange in the human alveolus in combination with an interactive simulation software named . exceeds the current standard with its spatio-temporal resolution and a combination of visual and quantitative feedback. In , the course of the simulation can be traced in a three-dimensional rendering of an alveolus and dynamic plots. The user can interact by configuring essential model parameters. allows to run and compare multiple simulation instances simultaneously. We exemplified the use of for research by identifying unknown dependencies in published experimental data. Employing a detailed questionnaire, we showed the benefits of for education. We postulate that interactive, visual simulation of theoretical models, as we have implemented with on respiratory processes in the alveolus, can be of great help for communication between specialists and thereby advancing research.
在系统生物学等跨学科领域,实验人员和理论人员之间的良好沟通对于项目的成功至关重要。生理学中的理论建模通常描述具有许多相互依存关系的复杂系统。一方面,这些模型必须基于实验数据。另一方面,实验人员必须能够理解理论模型的相互依存复杂性,以便在生理学背景下解释模型的结果。我们提倡交互式可视化模拟,将其作为一种引人入胜的方式来展示生理学中的理论模型,并使复杂过程变得切实可感。基于需求分析,我们开发了一种新的人体肺泡气体交换模型,并结合了一个名为 的交互式模拟软件。 以其时空分辨率以及视觉和定量反馈的结合超越了当前标准。在 中,可以在肺泡的三维渲染图和动态图中追踪模拟过程。用户可以通过配置基本模型参数进行交互。 允许同时运行和比较多个模拟实例。我们通过识别已发表实验数据中的未知依存关系,举例说明了 在研究中的应用。通过使用详细的问卷,我们展示了 在教育方面的益处。我们假设,正如我们在肺泡呼吸过程中使用 所实现的那样,理论模型的交互式可视化模拟对于专家之间的沟通以及推进研究可能会有很大帮助。