Suppr超能文献

在线交易欺诈中的人工智能与人类心理

Artificial Intelligence and Human Psychology in Online Transaction Fraud.

作者信息

Firdaus Raheela, Xue Yang, Gang Li, Sibt E Ali Muhammad

机构信息

School of Management, North China University of Water Resources and Electric Power, Zhengzhou, China.

School of Economics, Bahauddin Zakariya University-BZU, Multan, Pakistan.

出版信息

Front Psychol. 2022 Oct 11;13:947234. doi: 10.3389/fpsyg.2022.947234. eCollection 2022.

Abstract

Banking operations have changed due to technological advancement. On one hand, modernization in technology has facilitated the daily operation of banks; on the other hand, this has also resulted in an increase in the number of cyber-attacks. Artificial Intelligence has introduced new models to detect and prevent cybercrimes. Some fraud has also occurred due to the involvement of employees inside particular organizations. So, this study has focused on both sides: the machine as well as the human. Firstly, the research has focused on fraud diamond theory and has analyzed factors such as rationalization, capabilities, perceived pressure, and perceived opportunities to understand the psychology of the fraudster. Secondly, Artificial Intelligence characteristics, threat exposure, big data management, explainability, cost effectiveness, and risk prediction are evaluated to explore their use in fraud reduction in banks. The research data have been collected from 15 Banks in Pakistan with the help of a questionnaire using five-item Likert scales. The data have been analyzed using IBM SPSS Software. The results gained after correlation and regression analysis proved that Fraud diamond theory and AI characteristics have positive and significant effects on cybercrimes. This study is a great contribution to the banking industry of Pakistan as it provides a complete analysis to control fraud inside organizations by understanding the mindset of fraudsters with the help of fraud diamond theory. At the same time, outside fraud will be handled with the help of Artificial Intelligence. This will result in banks growth, which ultimately boosts the economy of a country.

摘要

由于技术进步,银行业务发生了变化。一方面,技术现代化促进了银行的日常运营;另一方面,这也导致了网络攻击数量的增加。人工智能引入了新的模型来检测和预防网络犯罪。某些欺诈行为也是由于特定组织内部员工的参与而发生的。因此,本研究关注了两个方面:机器以及人。首先,研究聚焦于欺诈钻石理论,并分析了合理化、能力、感知压力和感知机会等因素,以了解欺诈者的心理。其次,对人工智能的特征、威胁暴露、大数据管理、可解释性、成本效益和风险预测进行了评估,以探索其在银行减少欺诈方面的用途。研究数据借助使用五点李克特量表的问卷从巴基斯坦的15家银行收集。数据使用IBM SPSS软件进行了分析。相关性和回归分析后得到的结果证明,欺诈钻石理论和人工智能特征对网络犯罪有积极且显著的影响。本研究对巴基斯坦银行业有巨大贡献,因为它通过借助欺诈钻石理论了解欺诈者的思维模式,为控制组织内部的欺诈行为提供了全面分析。同时,外部欺诈将借助人工智能来处理。这将促进银行发展,最终推动国家经济增长。

相似文献

1
Artificial Intelligence and Human Psychology in Online Transaction Fraud.
Front Psychol. 2022 Oct 11;13:947234. doi: 10.3389/fpsyg.2022.947234. eCollection 2022.
2
A Machine Learning and Blockchain Based Efficient Fraud Detection Mechanism.
Sensors (Basel). 2022 Sep 21;22(19):7162. doi: 10.3390/s22197162.
3
Enhancing fraud detection in banking by integration of graph databases with machine learning.
MethodsX. 2024 Apr 4;12:102683. doi: 10.1016/j.mex.2024.102683. eCollection 2024 Jun.
4
A systematic review of literature on credit card cyber fraud detection using machine and deep learning.
PeerJ Comput Sci. 2023 Apr 17;9:e1278. doi: 10.7717/peerj-cs.1278. eCollection 2023.
5
Artificial Intelligence Solutions to Detect Fraud in Healthcare Settings: A Scoping Review.
Stud Health Technol Inform. 2022 Jun 29;295:20-23. doi: 10.3233/SHTI220649.
6
The psychology of the internet fraud victimization of older adults: A systematic review.
Front Psychol. 2022 Sep 5;13:912242. doi: 10.3389/fpsyg.2022.912242. eCollection 2022.
7
E-Commerce Fraud Detection Model by Computer Artificial Intelligence Data Mining.
Comput Intell Neurosci. 2022 May 9;2022:8783783. doi: 10.1155/2022/8783783. eCollection 2022.
8
The determinants of investment fraud: A machine learning and artificial intelligence approach.
Front Big Data. 2022 Oct 10;5:961039. doi: 10.3389/fdata.2022.961039. eCollection 2022.
9
A novel approach for credit card fraud transaction detection using deep reinforcement learning scheme.
PeerJ Comput Sci. 2024 Apr 29;10:e1998. doi: 10.7717/peerj-cs.1998. eCollection 2024.

引用本文的文献

1
Multiliteracies meet new methods: The case for digital writing in English education case study in G-7 countries.
PLoS One. 2024 Jul 3;19(7):e0304343. doi: 10.1371/journal.pone.0304343. eCollection 2024.

本文引用的文献

2
Health Care Organizations: Soft Target during COVID-19 Pandemic.
Prehosp Disaster Med. 2021 Jun;36(3):344-347. doi: 10.1017/S1049023X2100025X. Epub 2021 Feb 24.
3
Big data handling mechanisms in the healthcare applications: A comprehensive and systematic literature review.
J Biomed Inform. 2018 Jun;82:47-62. doi: 10.1016/j.jbi.2018.03.014. Epub 2018 Apr 12.
4
Fraud, individuals, and networks: A biopsychosocial model of scientific frauds.
Sci Justice. 2016 Mar;56(2):109-12. doi: 10.1016/j.scijus.2016.01.002. Epub 2016 Feb 16.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验