School of Biological and Health Systems Engineering, Arizona State University, Tempe, AZ, USA.
Adv Exp Med Biol. 2022;1380:111-134. doi: 10.1007/978-3-031-03873-0_5.
Magnetic resonance electrical impedance tomography (MREIT) can provide internal conductivity distributions at low frequency (below 1 kHz) induced by an external injecting current. In MREIT, we inject current I using at least one pair of electrodes into an object to produce internal current density J = (J, J, J) and magnetic flux density B = (B, B, B) in the object. An MRI scanner with its main magnetic field pointing the z direction is used to measure the induced magnetic flux density (B) caused by external current injection. To avoid the interaction of external current injection with MRI acquisitions, it is important to synchronize the current injection with MRI sequence. In the first part of this chapter, we will discuss the practical aspects of a successful MREIT experiment. Following a brief introduction to the experiment setup, we will then summarize various MRI sequences used for MREIT, magnetic flux density measurement, and image reconstructions for MREIT experiments.
磁共振电阻抗断层成像(MREIT)可以提供由外部注入电流在低频(低于 1 kHz)下诱导的内部电导率分布。在 MREIT 中,我们使用至少一对电极将电流 I 注入物体中,以在物体中产生内部电流密度 J = (J, J, J) 和磁通密度 B = (B, B, B)。一台主磁场指向 z 方向的 MRI 扫描仪用于测量由外部电流注入引起的感应磁通密度 (B)。为了避免外部电流注入与 MRI 采集的相互作用,将电流注入与 MRI 序列同步非常重要。在本章的第一部分,我们将讨论成功的 MREIT 实验的实际方面。在简要介绍实验设置后,我们将总结用于 MREIT 实验的各种 MRI 序列、磁通密度测量以及用于 MREIT 实验的图像重建。