IEEE Trans Med Imaging. 2023 Feb;42(2):403-415. doi: 10.1109/TMI.2022.3218170. Epub 2023 Feb 2.
Deep neural networks have shown promise in image reconstruction tasks, although often on the premise of large amounts of training data. In this paper, we present a new approach to exploit the geometry and physics underlying electrocardiographic imaging (ECGI) to learn efficiently with a relatively small dataset. We first introduce a non-Euclidean encoding-decoding network that allows us to describe the unknown and measurement variables over their respective geometrical domains. We then explicitly model the geometry-dependent physics in between the two domains via a bipartite graph over their graphical embeddings. We applied the resulting network to reconstruct electrical activity on the heart surface from body-surface potentials. In a series of generalization tasks with increasing difficulty, we demonstrated the improved ability of the network to generalize across geometrical changes underlying the data using less than 10% of training data and fewer variations of training geometry in comparison to its Euclidean alternatives. In both simulation and real-data experiments, we further demonstrated its ability to be quickly fine-tuned to new geometry using a modest amount of data.
深度神经网络在图像重建任务中表现出了潜力,尽管通常需要大量的训练数据。在本文中,我们提出了一种新的方法,利用心电图成像(ECGI)背后的几何形状和物理原理,通过相对较小的数据集来进行高效学习。我们首先引入了一种非欧几里得编码-解码网络,使我们能够在各自的几何域上描述未知和测量变量。然后,我们通过两个图形嵌入之间的二分图来显式地建模两个域之间的几何相关物理。我们将得到的网络应用于从体表电势重建心脏表面的电活动。在一系列具有递增难度的泛化任务中,我们证明了该网络在使用不到 10%的训练数据和比其欧几里得替代方案更少的训练几何变化的情况下,能够提高在数据底层的几何变化上进行泛化的能力。在模拟和真实数据实验中,我们还进一步证明了该网络能够使用少量数据快速调整到新的几何形状。