Suppr超能文献

通过学习基于几何和物理的图像序列重建来提高泛化能力。

Improving Generalization by Learning Geometry-Dependent and Physics-Based Reconstruction of Image Sequences.

出版信息

IEEE Trans Med Imaging. 2023 Feb;42(2):403-415. doi: 10.1109/TMI.2022.3218170. Epub 2023 Feb 2.

Abstract

Deep neural networks have shown promise in image reconstruction tasks, although often on the premise of large amounts of training data. In this paper, we present a new approach to exploit the geometry and physics underlying electrocardiographic imaging (ECGI) to learn efficiently with a relatively small dataset. We first introduce a non-Euclidean encoding-decoding network that allows us to describe the unknown and measurement variables over their respective geometrical domains. We then explicitly model the geometry-dependent physics in between the two domains via a bipartite graph over their graphical embeddings. We applied the resulting network to reconstruct electrical activity on the heart surface from body-surface potentials. In a series of generalization tasks with increasing difficulty, we demonstrated the improved ability of the network to generalize across geometrical changes underlying the data using less than 10% of training data and fewer variations of training geometry in comparison to its Euclidean alternatives. In both simulation and real-data experiments, we further demonstrated its ability to be quickly fine-tuned to new geometry using a modest amount of data.

摘要

深度神经网络在图像重建任务中表现出了潜力,尽管通常需要大量的训练数据。在本文中,我们提出了一种新的方法,利用心电图成像(ECGI)背后的几何形状和物理原理,通过相对较小的数据集来进行高效学习。我们首先引入了一种非欧几里得编码-解码网络,使我们能够在各自的几何域上描述未知和测量变量。然后,我们通过两个图形嵌入之间的二分图来显式地建模两个域之间的几何相关物理。我们将得到的网络应用于从体表电势重建心脏表面的电活动。在一系列具有递增难度的泛化任务中,我们证明了该网络在使用不到 10%的训练数据和比其欧几里得替代方案更少的训练几何变化的情况下,能够提高在数据底层的几何变化上进行泛化的能力。在模拟和真实数据实验中,我们还进一步证明了该网络能够使用少量数据快速调整到新的几何形状。

相似文献

1
Improving Generalization by Learning Geometry-Dependent and Physics-Based Reconstruction of Image Sequences.
IEEE Trans Med Imaging. 2023 Feb;42(2):403-415. doi: 10.1109/TMI.2022.3218170. Epub 2023 Feb 2.
2
Hybrid Neural State-Space Modeling for Supervised and Unsupervised Electrocardiographic Imaging.
IEEE Trans Med Imaging. 2024 Aug;43(8):2733-2744. doi: 10.1109/TMI.2024.3377094. Epub 2024 Aug 1.
4
Data-efficient Bayesian learning for radial dynamic MR reconstruction.
Med Phys. 2023 Nov;50(11):6955-6977. doi: 10.1002/mp.16543. Epub 2023 Jun 27.
5
Automatic MR image quality evaluation using a Deep CNN: A reference-free method to rate motion artifacts in neuroimaging.
Comput Med Imaging Graph. 2021 Jun;90:101897. doi: 10.1016/j.compmedimag.2021.101897. Epub 2021 Mar 11.
7
A Stacked Generalization U-shape network based on zoom strategy and its application in biomedical image segmentation.
Comput Methods Programs Biomed. 2020 Dec;197:105678. doi: 10.1016/j.cmpb.2020.105678. Epub 2020 Jul 30.
8
Evaluation on the generalization of a learned convolutional neural network for MRI reconstruction.
Magn Reson Imaging. 2022 Apr;87:38-46. doi: 10.1016/j.mri.2021.12.003. Epub 2021 Dec 27.
9
Mitigation of motion-induced artifacts in cone beam computed tomography using deep convolutional neural networks.
Med Phys. 2023 Oct;50(10):6228-6242. doi: 10.1002/mp.16405. Epub 2023 Apr 11.
10
End-to-end memory-efficient reconstruction for cone beam CT.
Med Phys. 2023 Dec;50(12):7579-7593. doi: 10.1002/mp.16779. Epub 2023 Oct 17.

引用本文的文献

2
Hybrid Neural State-Space Modeling for Supervised and Unsupervised Electrocardiographic Imaging.
IEEE Trans Med Imaging. 2024 Aug;43(8):2733-2744. doi: 10.1109/TMI.2024.3377094. Epub 2024 Aug 1.
3
Toward Enabling Cardiac Digital Twins of Myocardial Infarction Using Deep Computational Models for Inverse Inference.
IEEE Trans Med Imaging. 2024 Jul;43(7):2466-2478. doi: 10.1109/TMI.2024.3367409. Epub 2024 Jul 1.

本文引用的文献

1
Improving Localization of Cardiac Geometry Using ECGI.
Comput Cardiol (2010). 2020 Sep;47. doi: 10.22489/cinc.2020.273. Epub 2021 Feb 10.
2
A Comprehensive Survey on Graph Neural Networks.
IEEE Trans Neural Netw Learn Syst. 2021 Jan;32(1):4-24. doi: 10.1109/TNNLS.2020.2978386. Epub 2021 Jan 4.
3
Noninvasive Reconstruction of Transmural Transmembrane Potential With Simultaneous Estimation of Prior Model Error.
IEEE Trans Med Imaging. 2019 Nov;38(11):2582-2595. doi: 10.1109/TMI.2019.2906600. Epub 2019 Mar 20.
4
Tracking the Position of the Heart From Body Surface Potential Maps and Electrograms.
Front Physiol. 2018 Dec 3;9:1727. doi: 10.3389/fphys.2018.01727. eCollection 2018.
5
A machine learning approach to reconstruction of heart surface potentials from body surface potentials.
Annu Int Conf IEEE Eng Med Biol Soc. 2018 Jul;2018:4828-4831. doi: 10.1109/EMBC.2018.8513207.
7
Transfer Learning From Simulations on a Reference Anatomy for ECGI in Personalized Cardiac Resynchronization Therapy.
IEEE Trans Biomed Eng. 2019 Feb;66(2):343-353. doi: 10.1109/TBME.2018.2839713. Epub 2018 May 23.
8
Image reconstruction by domain-transform manifold learning.
Nature. 2018 Mar 21;555(7697):487-492. doi: 10.1038/nature25988.
9
Beyond a Gaussian Denoiser: Residual Learning of Deep CNN for Image Denoising.
IEEE Trans Image Process. 2017 Jul;26(7):3142-3155. doi: 10.1109/TIP.2017.2662206. Epub 2017 Feb 1.
10
Image Super-Resolution Using Deep Convolutional Networks.
IEEE Trans Pattern Anal Mach Intell. 2016 Feb;38(2):295-307. doi: 10.1109/TPAMI.2015.2439281.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验